Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > i3th4 | GIF version |
Description: Theorem for Kalmbach implication. (Contributed by NM, 7-Nov-1997.) |
Ref | Expression |
---|---|
i3th4 | (a →3 (b →3 b)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | i31 520 | . 2 (a →3 1) = 1 | |
2 | i3id 251 | . . . . 5 (b →3 b) = 1 | |
3 | 2 | ax-r1 35 | . . . 4 1 = (b →3 b) |
4 | 3 | li3 252 | . . 3 (a →3 1) = (a →3 (b →3 b)) |
5 | 4 | rbi 98 | . 2 ((a →3 1) ≡ 1) = ((a →3 (b →3 b)) ≡ 1) |
6 | 1, 5 | wed 441 | 1 (a →3 (b →3 b)) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 1wt 8 →3 wi3 14 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |