Proof of Theorem ni31
Step | Hyp | Ref
| Expression |
1 | | df-i3 46 |
. . 3
(a →3 b) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) |
2 | | oran 87 |
. . . 4
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥ ∩
(a ∩ (a⊥ ∪ b))⊥
)⊥ |
3 | | oran 87 |
. . . . . . . 8
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b)⊥ ∩ (a⊥ ∩ b⊥ )⊥
)⊥ |
4 | | anor2 89 |
. . . . . . . . . . 11
(a⊥ ∩ b) = (a ∪
b⊥
)⊥ |
5 | 4 | con2 67 |
. . . . . . . . . 10
(a⊥ ∩ b)⊥ = (a ∪ b⊥ ) |
6 | | oran 87 |
. . . . . . . . . . 11
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
7 | 6 | ax-r1 35 |
. . . . . . . . . 10
(a⊥ ∩ b⊥ )⊥ = (a ∪ b) |
8 | 5, 7 | 2an 79 |
. . . . . . . . 9
((a⊥ ∩ b)⊥ ∩ (a⊥ ∩ b⊥ )⊥ ) =
((a ∪ b⊥ ) ∩ (a ∪ b)) |
9 | 8 | ax-r4 37 |
. . . . . . . 8
((a⊥ ∩ b)⊥ ∩ (a⊥ ∩ b⊥ )⊥
)⊥ = ((a ∪ b⊥ ) ∩ (a ∪ b))⊥ |
10 | 3, 9 | ax-r2 36 |
. . . . . . 7
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) = ((a ∪ b⊥ ) ∩ (a ∪ b))⊥ |
11 | 10 | con2 67 |
. . . . . 6
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥ =
((a ∪ b⊥ ) ∩ (a ∪ b)) |
12 | | df-a 40 |
. . . . . . . 8
(a ∩ (a⊥ ∪ b)) = (a⊥ ∪ (a⊥ ∪ b)⊥
)⊥ |
13 | | anor1 88 |
. . . . . . . . . . 11
(a ∩ b⊥ ) = (a⊥ ∪ b)⊥ |
14 | 13 | ax-r1 35 |
. . . . . . . . . 10
(a⊥ ∪ b)⊥ = (a ∩ b⊥ ) |
15 | 14 | lor 70 |
. . . . . . . . 9
(a⊥ ∪ (a⊥ ∪ b)⊥ ) = (a⊥ ∪ (a ∩ b⊥ )) |
16 | 15 | ax-r4 37 |
. . . . . . . 8
(a⊥ ∪ (a⊥ ∪ b)⊥ )⊥ = (a⊥ ∪ (a ∩ b⊥
))⊥ |
17 | 12, 16 | ax-r2 36 |
. . . . . . 7
(a ∩ (a⊥ ∪ b)) = (a⊥ ∪ (a ∩ b⊥
))⊥ |
18 | 17 | con2 67 |
. . . . . 6
(a ∩ (a⊥ ∪ b))⊥ = (a⊥ ∪ (a ∩ b⊥ )) |
19 | 11, 18 | 2an 79 |
. . . . 5
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ ))⊥ ∩
(a ∩ (a⊥ ∪ b))⊥ ) = (((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) |
20 | 19 | ax-r4 37 |
. . . 4
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ ))⊥ ∩
(a ∩ (a⊥ ∪ b))⊥ )⊥ =
(((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥
)))⊥ |
21 | 2, 20 | ax-r2 36 |
. . 3
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) = (((a
∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥
)))⊥ |
22 | 1, 21 | ax-r2 36 |
. 2
(a →3 b) = (((a ∪
b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥
)))⊥ |
23 | 22 | con2 67 |
1
(a →3 b)⊥ = (((a ∪ b⊥ ) ∩ (a ∪ b))
∩ (a⊥ ∪ (a ∩ b⊥ ))) |