Proof of Theorem i3orlem3
Step | Hyp | Ref
| Expression |
1 | | ax-a2 31 |
. . . . . 6
((a ∪ c)⊥ ∪ c) = (c ∪
(a ∪ c)⊥ ) |
2 | 1 | lan 77 |
. . . . 5
(c ∩ ((a ∪ c)⊥ ∪ c)) = (c ∩
(c ∪ (a ∪ c)⊥ )) |
3 | | anabs 121 |
. . . . 5
(c ∩ (c ∪ (a ∪
c)⊥ )) = c |
4 | 2, 3 | ax-r2 36 |
. . . 4
(c ∩ ((a ∪ c)⊥ ∪ c)) = c |
5 | 4 | ax-r1 35 |
. . 3
c = (c ∩ ((a
∪ c)⊥ ∪ c)) |
6 | | leor 159 |
. . . 4
c ≤ (a ∪ c) |
7 | | leor 159 |
. . . . 5
c ≤ (b ∪ c) |
8 | 7 | lelor 166 |
. . . 4
((a ∪ c)⊥ ∪ c) ≤ ((a
∪ c)⊥ ∪ (b ∪ c)) |
9 | 6, 8 | le2an 169 |
. . 3
(c ∩ ((a ∪ c)⊥ ∪ c)) ≤ ((a
∪ c) ∩ ((a ∪ c)⊥ ∪ (b ∪ c))) |
10 | 5, 9 | bltr 138 |
. 2
c ≤ ((a ∪ c) ∩
((a ∪ c)⊥ ∪ (b ∪ c))) |
11 | | i3orlem1 552 |
. 2
((a ∪ c) ∩ ((a
∪ c)⊥ ∪ (b ∪ c)))
≤ ((a ∪ c) →3 (b ∪ c)) |
12 | 10, 11 | letr 137 |
1
c ≤ ((a ∪ c)
→3 (b ∪ c)) |