QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  wdka4o GIF version

Theorem wdka4o 1116
Description: Show WDOL analog of WOM law. (Contributed by NM, 5-Mar-2006.)
Hypothesis
Ref Expression
wdid0id5.1 (a0 b) = 1
Assertion
Ref Expression
wdka4o ((ac) ≡0 (bc)) = 1

Proof of Theorem wdka4o
StepHypRef Expression
1 wdid0id5.1 . . . 4 (a0 b) = 1
21wdid0id5 1111 . . 3 (ab) = 1
32wr5 431 . 2 ((ac) ≡ (bc)) = 1
43id5id0 352 1 ((ac) ≡0 (bc)) = 1
Colors of variables: term
Syntax hints:   = wb 1  wo 6  1wt 8  0 wid0 17
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-wom 361  ax-wdol 1104
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-i2 45  df-id0 49  df-le 129  df-le1 130  df-le2 131  df-cmtr 134
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator