Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > wddi-0 | GIF version |
Description: The weak distributive law in WDOL. (Contributed by NM, 5-Mar-2006.) |
Ref | Expression |
---|---|
wddi-0 | ((a ∩ (b ∪ c)) ≡0 ((a ∩ b) ∪ (a ∩ c))) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wddi1 1107 | . 2 ((a ∩ (b ∪ c)) ≡ ((a ∩ b) ∪ (a ∩ c))) = 1 | |
2 | 1 | id5id0 352 | 1 ((a ∩ (b ∪ c)) ≡0 ((a ∩ b) ∪ (a ∩ c))) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ∪ wo 6 ∩ wa 7 1wt 8 ≡0 wid0 17 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 ax-wdol 1104 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-id0 49 df-le 129 df-le1 130 df-le2 131 df-cmtr 134 |
This theorem is referenced by: wddi-1 1118 wddi-2 1119 wddi-3 1120 wddi-4 1121 |
Copyright terms: Public domain | W3C validator |