QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  wddi-0 GIF version

Theorem wddi-0 1117
Description: The weak distributive law in WDOL. (Contributed by NM, 5-Mar-2006.)
Assertion
Ref Expression
wddi-0 ((a ∩ (bc)) ≡0 ((ab) ∪ (ac))) = 1

Proof of Theorem wddi-0
StepHypRef Expression
1 wddi1 1107 . 2 ((a ∩ (bc)) ≡ ((ab) ∪ (ac))) = 1
21id5id0 352 1 ((a ∩ (bc)) ≡0 ((ab) ∪ (ac))) = 1
Colors of variables: term
Syntax hints:   = wb 1  wo 6  wa 7  1wt 8  0 wid0 17
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-wom 361  ax-wdol 1104
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-i2 45  df-id0 49  df-le 129  df-le1 130  df-le2 131  df-cmtr 134
This theorem is referenced by:  wddi-1  1118  wddi-2  1119  wddi-3  1120  wddi-4  1121
  Copyright terms: Public domain W3C validator