Proof of Theorem oa4v3v
Step | Hyp | Ref
| Expression |
1 | | oa4v3v.3 |
. . 3
((d ∪ b) ∩ (e
∪ c)) ≤ (b ∪ (d ∩
(e ∪ ((d ∪ e) ∩
(b ∪ c))))) |
2 | | ax-a2 31 |
. . . . . 6
(d ∪ b) = (b ∪
d) |
3 | | oa4v3v.4 |
. . . . . . 7
d = (a →2 b)⊥ |
4 | 3 | lor 70 |
. . . . . 6
(b ∪ d) = (b ∪
(a →2 b)⊥ ) |
5 | | oran1 91 |
. . . . . 6
(b ∪ (a →2 b)⊥ ) = (b⊥ ∩ (a →2 b))⊥ |
6 | 2, 4, 5 | 3tr 65 |
. . . . 5
(d ∪ b) = (b⊥ ∩ (a →2 b))⊥ |
7 | | ax-a2 31 |
. . . . . 6
(e ∪ c) = (c ∪
e) |
8 | | oa4v3v.5 |
. . . . . . 7
e = (a →2 c)⊥ |
9 | 8 | lor 70 |
. . . . . 6
(c ∪ e) = (c ∪
(a →2 c)⊥ ) |
10 | | oran1 91 |
. . . . . 6
(c ∪ (a →2 c)⊥ ) = (c⊥ ∩ (a →2 c))⊥ |
11 | 7, 9, 10 | 3tr 65 |
. . . . 5
(e ∪ c) = (c⊥ ∩ (a →2 c))⊥ |
12 | 6, 11 | 2an 79 |
. . . 4
((d ∪ b) ∩ (e
∪ c)) = ((b⊥ ∩ (a →2 b))⊥ ∩ (c⊥ ∩ (a →2 c))⊥ ) |
13 | | anor3 90 |
. . . 4
((b⊥ ∩
(a →2 b))⊥ ∩ (c⊥ ∩ (a →2 c))⊥ ) = ((b⊥ ∩ (a →2 b)) ∪ (c⊥ ∩ (a →2 c)))⊥ |
14 | 12, 13 | ax-r2 36 |
. . 3
((d ∪ b) ∩ (e
∪ c)) = ((b⊥ ∩ (a →2 b)) ∪ (c⊥ ∩ (a →2 c)))⊥ |
15 | | ancom 74 |
. . . . . . . . . 10
((d ∪ e) ∩ (b
∪ c)) = ((b ∪ c) ∩
(d ∪ e)) |
16 | 3, 8 | 2or 72 |
. . . . . . . . . . . 12
(d ∪ e) = ((a
→2 b)⊥
∪ (a →2 c)⊥ ) |
17 | | oran3 93 |
. . . . . . . . . . . 12
((a →2 b)⊥ ∪ (a →2 c)⊥ ) = ((a →2 b) ∩ (a
→2 c))⊥ |
18 | 16, 17 | ax-r2 36 |
. . . . . . . . . . 11
(d ∪ e) = ((a
→2 b) ∩ (a →2 c))⊥ |
19 | 18 | lan 77 |
. . . . . . . . . 10
((b ∪ c) ∩ (d
∪ e)) = ((b ∪ c) ∩
((a →2 b) ∩ (a
→2 c))⊥
) |
20 | | anor1 88 |
. . . . . . . . . 10
((b ∪ c) ∩ ((a
→2 b) ∩ (a →2 c))⊥ ) = ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))⊥ |
21 | 15, 19, 20 | 3tr 65 |
. . . . . . . . 9
((d ∪ e) ∩ (b
∪ c)) = ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))⊥ |
22 | 8, 21 | 2or 72 |
. . . . . . . 8
(e ∪ ((d ∪ e) ∩
(b ∪ c))) = ((a
→2 c)⊥
∪ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))⊥
) |
23 | | oran3 93 |
. . . . . . . 8
((a →2 c)⊥ ∪ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))⊥ )
= ((a →2 c) ∩ ((b
∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c))))⊥ |
24 | 22, 23 | ax-r2 36 |
. . . . . . 7
(e ∪ ((d ∪ e) ∩
(b ∪ c))) = ((a
→2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c))))⊥ |
25 | 3, 24 | 2an 79 |
. . . . . 6
(d ∩ (e ∪ ((d
∪ e) ∩ (b ∪ c)))) =
((a →2 b)⊥ ∩ ((a →2 c) ∩ ((b
∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c))))⊥
) |
26 | | anor3 90 |
. . . . . 6
((a →2 b)⊥ ∩ ((a →2 c) ∩ ((b
∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c))))⊥
) = ((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))))⊥ |
27 | 25, 26 | ax-r2 36 |
. . . . 5
(d ∩ (e ∪ ((d
∪ e) ∩ (b ∪ c)))) =
((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))))⊥ |
28 | 27 | lor 70 |
. . . 4
(b ∪ (d ∩ (e ∪
((d ∪ e) ∩ (b
∪ c))))) = (b ∪ ((a
→2 b) ∪ ((a →2 c) ∩ ((b
∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))))⊥
) |
29 | | oran1 91 |
. . . 4
(b ∪ ((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))))⊥
) = (b⊥ ∩ ((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c))))))⊥ |
30 | 28, 29 | ax-r2 36 |
. . 3
(b ∪ (d ∩ (e ∪
((d ∪ e) ∩ (b
∪ c))))) = (b⊥ ∩ ((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c))))))⊥ |
31 | 1, 14, 30 | le3tr2 141 |
. 2
((b⊥ ∩
(a →2 b)) ∪ (c⊥ ∩ (a →2 c)))⊥ ≤ (b⊥ ∩ ((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c))))))⊥ |
32 | 31 | lecon1 155 |
1
(b⊥ ∩
((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))))) ≤ ((b⊥ ∩ (a →2 b)) ∪ (c⊥ ∩ (a →2 c))) |