Proof of Theorem oa3to4lem6
| Step | Hyp | Ref
| Expression |
| 1 | | oa3to4lem6.oa4.1 |
. . . . . 6
a ≤ b⊥ |
| 2 | 1 | lecon3 157 |
. . . . 5
b ≤ a⊥ |
| 3 | 2 | lecon 154 |
. . . 4
a⊥
⊥ ≤ b⊥ |
| 4 | | oa3to4lem6.oa4.2 |
. . . . . 6
c ≤ d⊥ |
| 5 | 4 | lecon3 157 |
. . . . 5
d ≤ c⊥ |
| 6 | 5 | lecon 154 |
. . . 4
c⊥
⊥ ≤ d⊥ |
| 7 | | id 59 |
. . . 4
((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) = ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) |
| 8 | | oa3to4lem6.oa3 |
. . . . 5
(e ∩ ((e →1 g) ∪ ((f
→1 g) ∩ ((e ∩ f) ∪
((e →1 g) ∩ (f
→1 g)))))) ≤ ((e ∩ g) ∪
(f ∩ g)) |
| 9 | | oa3to4lem6.4 |
. . . . . 6
e = a⊥ |
| 10 | | oa3to4lem6.3 |
. . . . . . . 8
g = ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) |
| 11 | 9, 10 | ud1lem0ab 257 |
. . . . . . 7
(e →1 g) = (a⊥ →1 ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ ))) |
| 12 | | oa3to4lem6.5 |
. . . . . . . . 9
f = c⊥ |
| 13 | 12, 10 | ud1lem0ab 257 |
. . . . . . . 8
(f →1 g) = (c⊥ →1 ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ ))) |
| 14 | 9, 12 | 2an 79 |
. . . . . . . . 9
(e ∩ f) = (a⊥ ∩ c⊥ ) |
| 15 | 11, 13 | 2an 79 |
. . . . . . . . 9
((e →1 g) ∩ (f
→1 g)) = ((a⊥ →1 ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ ))) ∩ (c⊥ →1 ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )))) |
| 16 | 14, 15 | 2or 72 |
. . . . . . . 8
((e ∩ f) ∪ ((e
→1 g) ∩ (f →1 g))) = ((a⊥ ∩ c⊥ ) ∪ ((a⊥ →1 ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ ))) ∩ (c⊥ →1 ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ ))))) |
| 17 | 13, 16 | 2an 79 |
. . . . . . 7
((f →1 g) ∩ ((e
∩ f) ∪ ((e →1 g) ∩ (f
→1 g)))) = ((c⊥ →1 ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ ))) ∩ ((a⊥ ∩ c⊥ ) ∪ ((a⊥ →1 ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ ))) ∩ (c⊥ →1 ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )))))) |
| 18 | 11, 17 | 2or 72 |
. . . . . 6
((e →1 g) ∪ ((f
→1 g) ∩ ((e ∩ f) ∪
((e →1 g) ∩ (f
→1 g))))) = ((a⊥ →1 ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ ))) ∪ ((c⊥ →1 ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ ))) ∩ ((a⊥ ∩ c⊥ ) ∪ ((a⊥ →1 ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ ))) ∩ (c⊥ →1 ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ ))))))) |
| 19 | 9, 18 | 2an 79 |
. . . . 5
(e ∩ ((e →1 g) ∪ ((f
→1 g) ∩ ((e ∩ f) ∪
((e →1 g) ∩ (f
→1 g)))))) = (a⊥ ∩ ((a⊥ →1 ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ ))) ∪ ((c⊥ →1 ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ ))) ∩ ((a⊥ ∩ c⊥ ) ∪ ((a⊥ →1 ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ ))) ∩ (c⊥ →1 ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )))))))) |
| 20 | 9, 10 | 2an 79 |
. . . . . 6
(e ∩ g) = (a⊥ ∩ ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ ))) |
| 21 | 12, 10 | 2an 79 |
. . . . . 6
(f ∩ g) = (c⊥ ∩ ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ ))) |
| 22 | 20, 21 | 2or 72 |
. . . . 5
((e ∩ g) ∪ (f
∩ g)) = ((a⊥ ∩ ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ ))) ∪ (c⊥ ∩ ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )))) |
| 23 | 8, 19, 22 | le3tr2 141 |
. . . 4
(a⊥ ∩
((a⊥ →1
((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ ))) ∪ ((c⊥ →1 ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ ))) ∩ ((a⊥ ∩ c⊥ ) ∪ ((a⊥ →1 ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ ))) ∩ (c⊥ →1 ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )))))))) ≤ ((a⊥ ∩ ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ ))) ∪ (c⊥ ∩ ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )))) |
| 24 | 3, 6, 7, 23 | oa3to4lem4 948 |
. . 3
(a⊥ ∩ (b⊥ ∪ (d⊥ ∩ ((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥ ))))) ≤ ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) |
| 25 | | anor3 90 |
. . . . . . . . . . 11
(a⊥ ∩ c⊥ ) = (a ∪ c)⊥ |
| 26 | | anor3 90 |
. . . . . . . . . . 11
(b⊥ ∩ d⊥ ) = (b ∪ d)⊥ |
| 27 | 25, 26 | 2or 72 |
. . . . . . . . . 10
((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥ )) = ((a ∪ c)⊥ ∪ (b ∪ d)⊥ ) |
| 28 | | oran3 93 |
. . . . . . . . . 10
((a ∪ c)⊥ ∪ (b ∪ d)⊥ ) = ((a ∪ c) ∩
(b ∪ d))⊥ |
| 29 | 27, 28 | ax-r2 36 |
. . . . . . . . 9
((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥ )) = ((a ∪ c) ∩
(b ∪ d))⊥ |
| 30 | 29 | lan 77 |
. . . . . . . 8
(d⊥ ∩
((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥ ))) = (d⊥ ∩ ((a ∪ c) ∩
(b ∪ d))⊥ ) |
| 31 | | anor3 90 |
. . . . . . . 8
(d⊥ ∩
((a ∪ c) ∩ (b
∪ d))⊥ ) = (d ∪ ((a
∪ c) ∩ (b ∪ d)))⊥ |
| 32 | 30, 31 | ax-r2 36 |
. . . . . . 7
(d⊥ ∩
((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥ ))) = (d ∪ ((a
∪ c) ∩ (b ∪ d)))⊥ |
| 33 | 32 | lor 70 |
. . . . . 6
(b⊥ ∪ (d⊥ ∩ ((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥ )))) = (b⊥ ∪ (d ∪ ((a
∪ c) ∩ (b ∪ d)))⊥ ) |
| 34 | | oran3 93 |
. . . . . 6
(b⊥ ∪ (d ∪ ((a
∪ c) ∩ (b ∪ d)))⊥ ) = (b ∩ (d ∪
((a ∪ c) ∩ (b
∪ d))))⊥ |
| 35 | 33, 34 | ax-r2 36 |
. . . . 5
(b⊥ ∪ (d⊥ ∩ ((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥ )))) = (b ∩ (d ∪
((a ∪ c) ∩ (b
∪ d))))⊥ |
| 36 | 35 | lan 77 |
. . . 4
(a⊥ ∩ (b⊥ ∪ (d⊥ ∩ ((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥ ))))) = (a⊥ ∩ (b ∩ (d ∪
((a ∪ c) ∩ (b
∪ d))))⊥
) |
| 37 | | anor3 90 |
. . . 4
(a⊥ ∩ (b ∩ (d ∪
((a ∪ c) ∩ (b
∪ d))))⊥ ) = (a ∪ (b ∩
(d ∪ ((a ∪ c) ∩
(b ∪ d)))))⊥ |
| 38 | 36, 37 | ax-r2 36 |
. . 3
(a⊥ ∩ (b⊥ ∪ (d⊥ ∩ ((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥ ))))) = (a ∪ (b ∩
(d ∪ ((a ∪ c) ∩
(b ∪ d)))))⊥ |
| 39 | | anor3 90 |
. . . . 5
(a⊥ ∩ b⊥ ) = (a ∪ b)⊥ |
| 40 | | anor3 90 |
. . . . 5
(c⊥ ∩ d⊥ ) = (c ∪ d)⊥ |
| 41 | 39, 40 | 2or 72 |
. . . 4
((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) = ((a ∪ b)⊥ ∪ (c ∪ d)⊥ ) |
| 42 | | oran3 93 |
. . . 4
((a ∪ b)⊥ ∪ (c ∪ d)⊥ ) = ((a ∪ b) ∩
(c ∪ d))⊥ |
| 43 | 41, 42 | ax-r2 36 |
. . 3
((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) = ((a ∪ b) ∩
(c ∪ d))⊥ |
| 44 | 24, 38, 43 | le3tr2 141 |
. 2
(a ∪ (b ∩ (d ∪
((a ∪ c) ∩ (b
∪ d)))))⊥ ≤
((a ∪ b) ∩ (c
∪ d))⊥ |
| 45 | 44 | lecon1 155 |
1
((a ∪ b) ∩ (c
∪ d)) ≤ (a ∪ (b ∩
(d ∪ ((a ∪ c) ∩
(b ∪ d))))) |