Proof of Theorem neg3antlem2
Step | Hyp | Ref
| Expression |
1 | | leor 159 |
. . . . 5
(a⊥ ∩ c) ≤ ((a
∩ c) ∪ (a⊥ ∩ c)) |
2 | | neg3ant.1 |
. . . . . . 7
(a →3 c) = (b
→3 c) |
3 | 2 | ran 78 |
. . . . . 6
((a →3 c) ∩ c) =
((b →3 c) ∩ c) |
4 | | u3lemab 612 |
. . . . . 6
((a →3 c) ∩ c) =
((a ∩ c) ∪ (a⊥ ∩ c)) |
5 | | u3lemab 612 |
. . . . . 6
((b →3 c) ∩ c) =
((b ∩ c) ∪ (b⊥ ∩ c)) |
6 | 3, 4, 5 | 3tr2 64 |
. . . . 5
((a ∩ c) ∪ (a⊥ ∩ c)) = ((b ∩
c) ∪ (b⊥ ∩ c)) |
7 | 1, 6 | lbtr 139 |
. . . 4
(a⊥ ∩ c) ≤ ((b
∩ c) ∪ (b⊥ ∩ c)) |
8 | | leor 159 |
. . . . 5
(b ∩ c) ≤ (b⊥ ∪ (b ∩ c)) |
9 | | leao1 162 |
. . . . 5
(b⊥ ∩ c) ≤ (b⊥ ∪ (b ∩ c)) |
10 | 8, 9 | lel2or 170 |
. . . 4
((b ∩ c) ∪ (b⊥ ∩ c)) ≤ (b⊥ ∪ (b ∩ c)) |
11 | 7, 10 | letr 137 |
. . 3
(a⊥ ∩ c) ≤ (b⊥ ∪ (b ∩ c)) |
12 | | leor 159 |
. . . . . . . . . . . 12
(b ∩ (b⊥ ∪ c)) ≤ (((b⊥ ∩ c) ∪ (b⊥ ∩ c⊥ )) ∪ (b ∩ (b⊥ ∪ c))) |
13 | | df-i3 46 |
. . . . . . . . . . . . . 14
(b →3 c) = (((b⊥ ∩ c) ∪ (b⊥ ∩ c⊥ )) ∪ (b ∩ (b⊥ ∪ c))) |
14 | 2, 13 | ax-r2 36 |
. . . . . . . . . . . . 13
(a →3 c) = (((b⊥ ∩ c) ∪ (b⊥ ∩ c⊥ )) ∪ (b ∩ (b⊥ ∪ c))) |
15 | 14 | ax-r1 35 |
. . . . . . . . . . . 12
(((b⊥ ∩
c) ∪ (b⊥ ∩ c⊥ )) ∪ (b ∩ (b⊥ ∪ c))) = (a
→3 c) |
16 | 12, 15 | lbtr 139 |
. . . . . . . . . . 11
(b ∩ (b⊥ ∪ c)) ≤ (a
→3 c) |
17 | | leao1 162 |
. . . . . . . . . . . 12
(b ∩ (b⊥ ∪ c)) ≤ (b
∪ c) |
18 | 2 | ran 78 |
. . . . . . . . . . . . . . . 16
((a →3 c) ∩ c⊥ ) = ((b →3 c) ∩ c⊥ ) |
19 | | u3lemanb 617 |
. . . . . . . . . . . . . . . 16
((a →3 c) ∩ c⊥ ) = (a⊥ ∩ c⊥ ) |
20 | | u3lemanb 617 |
. . . . . . . . . . . . . . . 16
((b →3 c) ∩ c⊥ ) = (b⊥ ∩ c⊥ ) |
21 | 18, 19, 20 | 3tr2 64 |
. . . . . . . . . . . . . . 15
(a⊥ ∩ c⊥ ) = (b⊥ ∩ c⊥ ) |
22 | | anor3 90 |
. . . . . . . . . . . . . . 15
(a⊥ ∩ c⊥ ) = (a ∪ c)⊥ |
23 | | anor3 90 |
. . . . . . . . . . . . . . 15
(b⊥ ∩ c⊥ ) = (b ∪ c)⊥ |
24 | 21, 22, 23 | 3tr2 64 |
. . . . . . . . . . . . . 14
(a ∪ c)⊥ = (b ∪ c)⊥ |
25 | 24 | con1 66 |
. . . . . . . . . . . . 13
(a ∪ c) = (b ∪
c) |
26 | 25 | ax-r1 35 |
. . . . . . . . . . . 12
(b ∪ c) = (a ∪
c) |
27 | 17, 26 | lbtr 139 |
. . . . . . . . . . 11
(b ∩ (b⊥ ∪ c)) ≤ (a
∪ c) |
28 | 16, 27 | ler2an 173 |
. . . . . . . . . 10
(b ∩ (b⊥ ∪ c)) ≤ ((a
→3 c) ∩ (a ∪ c)) |
29 | | u3lem15 795 |
. . . . . . . . . 10
((a →3 c) ∩ (a
∪ c)) = ((a⊥ ∪ c) ∩ (a
∪ (a⊥ ∩ c))) |
30 | 28, 29 | lbtr 139 |
. . . . . . . . 9
(b ∩ (b⊥ ∪ c)) ≤ ((a⊥ ∪ c) ∩ (a
∪ (a⊥ ∩ c))) |
31 | | lear 161 |
. . . . . . . . 9
((a⊥ ∪ c) ∩ (a
∪ (a⊥ ∩ c))) ≤ (a
∪ (a⊥ ∩ c)) |
32 | 30, 31 | letr 137 |
. . . . . . . 8
(b ∩ (b⊥ ∪ c)) ≤ (a
∪ (a⊥ ∩ c)) |
33 | | oran2 92 |
. . . . . . . . . 10
(b⊥ ∪ c) = (b ∩
c⊥
)⊥ |
34 | 33 | lan 77 |
. . . . . . . . 9
(b ∩ (b⊥ ∪ c)) = (b ∩
(b ∩ c⊥ )⊥
) |
35 | | anor1 88 |
. . . . . . . . 9
(b ∩ (b ∩ c⊥ )⊥ ) =
(b⊥ ∪ (b ∩ c⊥
))⊥ |
36 | 34, 35 | ax-r2 36 |
. . . . . . . 8
(b ∩ (b⊥ ∪ c)) = (b⊥ ∪ (b ∩ c⊥
))⊥ |
37 | | anor2 89 |
. . . . . . . . . 10
(a⊥ ∩ c) = (a ∪
c⊥
)⊥ |
38 | 37 | lor 70 |
. . . . . . . . 9
(a ∪ (a⊥ ∩ c)) = (a ∪
(a ∪ c⊥ )⊥
) |
39 | | oran1 91 |
. . . . . . . . 9
(a ∪ (a ∪ c⊥ )⊥ ) =
(a⊥ ∩ (a ∪ c⊥
))⊥ |
40 | 38, 39 | ax-r2 36 |
. . . . . . . 8
(a ∪ (a⊥ ∩ c)) = (a⊥ ∩ (a ∪ c⊥
))⊥ |
41 | 32, 36, 40 | le3tr2 141 |
. . . . . . 7
(b⊥ ∪ (b ∩ c⊥ ))⊥ ≤
(a⊥ ∩ (a ∪ c⊥
))⊥ |
42 | 41 | lecon1 155 |
. . . . . 6
(a⊥ ∩ (a ∪ c⊥ )) ≤ (b⊥ ∪ (b ∩ c⊥ )) |
43 | | leo 158 |
. . . . . . . 8
a⊥ ≤ (a⊥ ∪ c) |
44 | 2 | ax-r5 38 |
. . . . . . . . 9
((a →3 c) ∪ c) =
((b →3 c) ∪ c) |
45 | | u3lemob 632 |
. . . . . . . . 9
((a →3 c) ∪ c) =
(a⊥ ∪ c) |
46 | | u3lemob 632 |
. . . . . . . . 9
((b →3 c) ∪ c) =
(b⊥ ∪ c) |
47 | 44, 45, 46 | 3tr2 64 |
. . . . . . . 8
(a⊥ ∪ c) = (b⊥ ∪ c) |
48 | 43, 47 | lbtr 139 |
. . . . . . 7
a⊥ ≤ (b⊥ ∪ c) |
49 | 48 | lel 151 |
. . . . . 6
(a⊥ ∩ (a ∪ c⊥ )) ≤ (b⊥ ∪ c) |
50 | 42, 49 | ler2an 173 |
. . . . 5
(a⊥ ∩ (a ∪ c⊥ )) ≤ ((b⊥ ∪ (b ∩ c⊥ )) ∩ (b⊥ ∪ c)) |
51 | | comor1 461 |
. . . . . . 7
(b⊥ ∪ c) C b⊥ |
52 | 51 | comcom7 460 |
. . . . . . . 8
(b⊥ ∪ c) C b |
53 | | comor2 462 |
. . . . . . . . 9
(b⊥ ∪ c) C c |
54 | 53 | comcom2 183 |
. . . . . . . 8
(b⊥ ∪ c) C c⊥ |
55 | 52, 54 | com2an 484 |
. . . . . . 7
(b⊥ ∪ c) C (b
∩ c⊥
) |
56 | 51, 55 | fh1r 473 |
. . . . . 6
((b⊥ ∪
(b ∩ c⊥ )) ∩ (b⊥ ∪ c)) = ((b⊥ ∩ (b⊥ ∪ c)) ∪ ((b
∩ c⊥ ) ∩ (b⊥ ∪ c))) |
57 | | anabs 121 |
. . . . . . 7
(b⊥ ∩ (b⊥ ∪ c)) = b⊥ |
58 | 33 | lan 77 |
. . . . . . . 8
((b ∩ c⊥ ) ∩ (b⊥ ∪ c)) = ((b ∩
c⊥ ) ∩ (b ∩ c⊥ )⊥
) |
59 | | dff 101 |
. . . . . . . . 9
0 = ((b ∩ c⊥ ) ∩ (b ∩ c⊥ )⊥
) |
60 | 59 | ax-r1 35 |
. . . . . . . 8
((b ∩ c⊥ ) ∩ (b ∩ c⊥ )⊥ ) =
0 |
61 | 58, 60 | ax-r2 36 |
. . . . . . 7
((b ∩ c⊥ ) ∩ (b⊥ ∪ c)) = 0 |
62 | 57, 61 | 2or 72 |
. . . . . 6
((b⊥ ∩
(b⊥ ∪ c)) ∪ ((b
∩ c⊥ ) ∩ (b⊥ ∪ c))) = (b⊥ ∪ 0) |
63 | | or0 102 |
. . . . . 6
(b⊥ ∪ 0) =
b⊥ |
64 | 56, 62, 63 | 3tr 65 |
. . . . 5
((b⊥ ∪
(b ∩ c⊥ )) ∩ (b⊥ ∪ c)) = b⊥ |
65 | 50, 64 | lbtr 139 |
. . . 4
(a⊥ ∩ (a ∪ c⊥ )) ≤ b⊥ |
66 | 65 | ler 149 |
. . 3
(a⊥ ∩ (a ∪ c⊥ )) ≤ (b⊥ ∪ (b ∩ c)) |
67 | 11, 66 | lel2or 170 |
. 2
((a⊥ ∩ c) ∪ (a⊥ ∩ (a ∪ c⊥ ))) ≤ (b⊥ ∪ (b ∩ c)) |
68 | | id 59 |
. . . . 5
a⊥ = a⊥ |
69 | | ax-a2 31 |
. . . . . 6
((a⊥ ∩ c) ∪ a⊥ ) = (a⊥ ∪ (a⊥ ∩ c)) |
70 | | orabs 120 |
. . . . . 6
(a⊥ ∪ (a⊥ ∩ c)) = a⊥ |
71 | 69, 70 | ax-r2 36 |
. . . . 5
((a⊥ ∩ c) ∪ a⊥ ) = a⊥ |
72 | 68, 68, 71 | 3tr1 63 |
. . . 4
a⊥ = ((a⊥ ∩ c) ∪ a⊥ ) |
73 | | df-t 41 |
. . . . 5
1 = ((a⊥ ∩
c) ∪ (a⊥ ∩ c)⊥ ) |
74 | | oran1 91 |
. . . . . . 7
(a ∪ c⊥ ) = (a⊥ ∩ c)⊥ |
75 | 74 | lor 70 |
. . . . . 6
((a⊥ ∩ c) ∪ (a
∪ c⊥ )) = ((a⊥ ∩ c) ∪ (a⊥ ∩ c)⊥ ) |
76 | 75 | ax-r1 35 |
. . . . 5
((a⊥ ∩ c) ∪ (a⊥ ∩ c)⊥ ) = ((a⊥ ∩ c) ∪ (a
∪ c⊥
)) |
77 | 73, 76 | ax-r2 36 |
. . . 4
1 = ((a⊥ ∩
c) ∪ (a ∪ c⊥ )) |
78 | 72, 77 | 2an 79 |
. . 3
(a⊥ ∩ 1) =
(((a⊥ ∩ c) ∪ a⊥ ) ∩ ((a⊥ ∩ c) ∪ (a
∪ c⊥
))) |
79 | | an1 106 |
. . . 4
(a⊥ ∩ 1) =
a⊥ |
80 | 79 | ax-r1 35 |
. . 3
a⊥ = (a⊥ ∩ 1) |
81 | | coman1 185 |
. . . 4
(a⊥ ∩ c) C a⊥ |
82 | 81 | comcom7 460 |
. . . . 5
(a⊥ ∩ c) C a |
83 | | coman2 186 |
. . . . . 6
(a⊥ ∩ c) C c |
84 | 83 | comcom2 183 |
. . . . 5
(a⊥ ∩ c) C c⊥ |
85 | 82, 84 | com2or 483 |
. . . 4
(a⊥ ∩ c) C (a
∪ c⊥
) |
86 | 81, 85 | fh3 471 |
. . 3
((a⊥ ∩ c) ∪ (a⊥ ∩ (a ∪ c⊥ ))) = (((a⊥ ∩ c) ∪ a⊥ ) ∩ ((a⊥ ∩ c) ∪ (a
∪ c⊥
))) |
87 | 78, 80, 86 | 3tr1 63 |
. 2
a⊥ = ((a⊥ ∩ c) ∪ (a⊥ ∩ (a ∪ c⊥ ))) |
88 | | df-i1 44 |
. 2
(b →1 c) = (b⊥ ∪ (b ∩ c)) |
89 | 67, 87, 88 | le3tr1 140 |
1
a⊥ ≤ (b →1 c) |