Proof of Theorem lem3.3.7i4e2
Step | Hyp | Ref
| Expression |
1 | | lear 161 |
. . . . . 6
(a ∩ (a ∩ b)) ≤
(a ∩ b) |
2 | | lea 160 |
. . . . . . 7
(a ∩ b) ≤ a |
3 | | leid 148 |
. . . . . . 7
(a ∩ b) ≤ (a ∩
b) |
4 | 2, 3 | ler2an 173 |
. . . . . 6
(a ∩ b) ≤ (a ∩
(a ∩ b)) |
5 | 1, 4 | lebi 145 |
. . . . 5
(a ∩ (a ∩ b)) =
(a ∩ b) |
6 | 5 | lor 70 |
. . . 4
((a ∩ b)⊥ ∪ (a ∩ (a ∩
b))) = ((a ∩ b)⊥ ∪ (a ∩ b)) |
7 | 6 | lan 77 |
. . 3
((a⊥ ∪
(a ∩ b)) ∩ ((a
∩ b)⊥ ∪ (a ∩ (a ∩
b)))) = ((a⊥ ∪ (a ∩ b))
∩ ((a ∩ b)⊥ ∪ (a ∩ b))) |
8 | 3 | sklem 230 |
. . . 4
((a ∩ b)⊥ ∪ (a ∩ b)) =
1 |
9 | 8 | lan 77 |
. . 3
((a⊥ ∪
(a ∩ b)) ∩ ((a
∩ b)⊥ ∪ (a ∩ b))) =
((a⊥ ∪ (a ∩ b))
∩ 1) |
10 | | an1 106 |
. . . 4
((a⊥ ∪
(a ∩ b)) ∩ 1) = (a⊥ ∪ (a ∩ b)) |
11 | 2 | df2le2 136 |
. . . . . . 7
((a ∩ b) ∩ a) =
(a ∩ b) |
12 | 11 | ax-r1 35 |
. . . . . 6
(a ∩ b) = ((a ∩
b) ∩ a) |
13 | 12 | lor 70 |
. . . . 5
(a⊥ ∪ (a ∩ b)) =
(a⊥ ∪ ((a ∩ b) ∩
a)) |
14 | | an1r 107 |
. . . . . 6
(1 ∩ (a⊥ ∪
((a ∩ b) ∩ a))) =
(a⊥ ∪ ((a ∩ b) ∩
a)) |
15 | 14 | ax-r1 35 |
. . . . 5
(a⊥ ∪
((a ∩ b) ∩ a)) =
(1 ∩ (a⊥ ∪
((a ∩ b) ∩ a))) |
16 | 13, 15 | ax-r2 36 |
. . . 4
(a⊥ ∪ (a ∩ b)) = (1
∩ (a⊥ ∪ ((a ∩ b) ∩
a))) |
17 | 2 | sklem 230 |
. . . . . 6
((a ∩ b)⊥ ∪ a) = 1 |
18 | 17 | ax-r1 35 |
. . . . 5
1 = ((a ∩ b)⊥ ∪ a) |
19 | 18 | ran 78 |
. . . 4
(1 ∩ (a⊥ ∪
((a ∩ b) ∩ a))) =
(((a ∩ b)⊥ ∪ a) ∩ (a⊥ ∪ ((a ∩ b) ∩
a))) |
20 | 10, 16, 19 | 3tr 65 |
. . 3
((a⊥ ∪
(a ∩ b)) ∩ 1) = (((a ∩ b)⊥ ∪ a) ∩ (a⊥ ∪ ((a ∩ b) ∩
a))) |
21 | 7, 9, 20 | 3tr 65 |
. 2
((a⊥ ∪
(a ∩ b)) ∩ ((a
∩ b)⊥ ∪ (a ∩ (a ∩
b)))) = (((a ∩ b)⊥ ∪ a) ∩ (a⊥ ∪ ((a ∩ b) ∩
a))) |
22 | | df-id4 53 |
. 2
(a ≡4 (a ∩ b)) =
((a⊥ ∪ (a ∩ b))
∩ ((a ∩ b)⊥ ∪ (a ∩ (a ∩
b)))) |
23 | | df-id4 53 |
. 2
((a ∩ b) ≡4 a) = (((a ∩
b)⊥ ∪ a) ∩ (a⊥ ∪ ((a ∩ b) ∩
a))) |
24 | 21, 22, 23 | 3tr1 63 |
1
(a ≡4 (a ∩ b)) =
((a ∩ b) ≡4 a) |