Proof of Theorem lem3.3.7i4e1
| Step | Hyp | Ref
| Expression |
| 1 | | lear 161 |
. . . . . 6
(a ∩ (a ∩ b)) ≤
(a ∩ b) |
| 2 | | lea 160 |
. . . . . . 7
(a ∩ b) ≤ a |
| 3 | | leid 148 |
. . . . . . 7
(a ∩ b) ≤ (a ∩
b) |
| 4 | 2, 3 | ler2an 173 |
. . . . . 6
(a ∩ b) ≤ (a ∩
(a ∩ b)) |
| 5 | 1, 4 | lebi 145 |
. . . . 5
(a ∩ (a ∩ b)) =
(a ∩ b) |
| 6 | 5 | ax-r5 38 |
. . . 4
((a ∩ (a ∩ b))
∪ (a⊥ ∩ (a ∩ b))) =
((a ∩ b) ∪ (a⊥ ∩ (a ∩ b))) |
| 7 | 6 | ax-r5 38 |
. . 3
(((a ∩ (a ∩ b))
∪ (a⊥ ∩ (a ∩ b)))
∪ ((a⊥ ∪ (a ∩ b))
∩ (a ∩ b)⊥ )) = (((a ∩ b) ∪
(a⊥ ∩ (a ∩ b)))
∪ ((a⊥ ∪ (a ∩ b))
∩ (a ∩ b)⊥ )) |
| 8 | 2 | lecon 154 |
. . . . . . . 8
a⊥ ≤ (a ∩ b)⊥ |
| 9 | 8 | ortha 438 |
. . . . . . 7
(a⊥ ∩ (a ∩ b)) =
0 |
| 10 | 9 | lor 70 |
. . . . . 6
((a ∩ b) ∪ (a⊥ ∩ (a ∩ b))) =
((a ∩ b) ∪ 0) |
| 11 | 10 | ax-r5 38 |
. . . . 5
(((a ∩ b) ∪ (a⊥ ∩ (a ∩ b)))
∪ ((a⊥ ∪ (a ∩ b))
∩ (a ∩ b)⊥ )) = (((a ∩ b) ∪
0) ∪ ((a⊥ ∪
(a ∩ b)) ∩ (a
∩ b)⊥
)) |
| 12 | | or0 102 |
. . . . . 6
((a ∩ b) ∪ 0) = (a
∩ b) |
| 13 | 12 | ax-r5 38 |
. . . . 5
(((a ∩ b) ∪ 0) ∪ ((a⊥ ∪ (a ∩ b))
∩ (a ∩ b)⊥ )) = ((a ∩ b) ∪
((a⊥ ∪ (a ∩ b))
∩ (a ∩ b)⊥ )) |
| 14 | | leor 159 |
. . . . . . 7
(a ∩ b) ≤ (a⊥ ∪ (a ∩ b)) |
| 15 | | lea 160 |
. . . . . . 7
((a⊥ ∪
(a ∩ b)) ∩ (a
∩ b)⊥ ) ≤ (a⊥ ∪ (a ∩ b)) |
| 16 | 14, 15 | lel2or 170 |
. . . . . 6
((a ∩ b) ∪ ((a⊥ ∪ (a ∩ b))
∩ (a ∩ b)⊥ )) ≤ (a⊥ ∪ (a ∩ b)) |
| 17 | | leo 158 |
. . . . . . . . 9
a⊥ ≤ (a⊥ ∪ (a ∩ b)) |
| 18 | 17, 8 | ler2an 173 |
. . . . . . . 8
a⊥ ≤ ((a⊥ ∪ (a ∩ b))
∩ (a ∩ b)⊥ ) |
| 19 | 18 | lerr 150 |
. . . . . . 7
a⊥ ≤ ((a ∩ b) ∪
((a⊥ ∪ (a ∩ b))
∩ (a ∩ b)⊥ )) |
| 20 | | leo 158 |
. . . . . . 7
(a ∩ b) ≤ ((a
∩ b) ∪ ((a⊥ ∪ (a ∩ b))
∩ (a ∩ b)⊥ )) |
| 21 | 19, 20 | lel2or 170 |
. . . . . 6
(a⊥ ∪ (a ∩ b)) ≤
((a ∩ b) ∪ ((a⊥ ∪ (a ∩ b))
∩ (a ∩ b)⊥ )) |
| 22 | 16, 21 | lebi 145 |
. . . . 5
((a ∩ b) ∪ ((a⊥ ∪ (a ∩ b))
∩ (a ∩ b)⊥ )) = (a⊥ ∪ (a ∩ b)) |
| 23 | 11, 13, 22 | 3tr 65 |
. . . 4
(((a ∩ b) ∪ (a⊥ ∩ (a ∩ b)))
∪ ((a⊥ ∪ (a ∩ b))
∩ (a ∩ b)⊥ )) = (a⊥ ∪ (a ∩ b)) |
| 24 | | an1 106 |
. . . . 5
((a⊥ ∪
(a ∩ b)) ∩ 1) = (a⊥ ∪ (a ∩ b)) |
| 25 | 24 | ax-r1 35 |
. . . 4
(a⊥ ∪ (a ∩ b)) =
((a⊥ ∪ (a ∩ b))
∩ 1) |
| 26 | 3 | sklem 230 |
. . . . . 6
((a ∩ b)⊥ ∪ (a ∩ b)) =
1 |
| 27 | 26 | ax-r1 35 |
. . . . 5
1 = ((a ∩ b)⊥ ∪ (a ∩ b)) |
| 28 | 27 | lan 77 |
. . . 4
((a⊥ ∪
(a ∩ b)) ∩ 1) = ((a⊥ ∪ (a ∩ b))
∩ ((a ∩ b)⊥ ∪ (a ∩ b))) |
| 29 | 23, 25, 28 | 3tr 65 |
. . 3
(((a ∩ b) ∪ (a⊥ ∩ (a ∩ b)))
∪ ((a⊥ ∪ (a ∩ b))
∩ (a ∩ b)⊥ )) = ((a⊥ ∪ (a ∩ b))
∩ ((a ∩ b)⊥ ∪ (a ∩ b))) |
| 30 | 4, 1 | lebi 145 |
. . . . 5
(a ∩ b) = (a ∩
(a ∩ b)) |
| 31 | 30 | lor 70 |
. . . 4
((a ∩ b)⊥ ∪ (a ∩ b)) =
((a ∩ b)⊥ ∪ (a ∩ (a ∩
b))) |
| 32 | 31 | lan 77 |
. . 3
((a⊥ ∪
(a ∩ b)) ∩ ((a
∩ b)⊥ ∪ (a ∩ b))) =
((a⊥ ∪ (a ∩ b))
∩ ((a ∩ b)⊥ ∪ (a ∩ (a ∩
b)))) |
| 33 | 7, 29, 32 | 3tr 65 |
. 2
(((a ∩ (a ∩ b))
∪ (a⊥ ∩ (a ∩ b)))
∪ ((a⊥ ∪ (a ∩ b))
∩ (a ∩ b)⊥ )) = ((a⊥ ∪ (a ∩ b))
∩ ((a ∩ b)⊥ ∪ (a ∩ (a ∩
b)))) |
| 34 | | df-i4 47 |
. 2
(a →4 (a ∩ b)) =
(((a ∩ (a ∩ b))
∪ (a⊥ ∩ (a ∩ b)))
∪ ((a⊥ ∪ (a ∩ b))
∩ (a ∩ b)⊥ )) |
| 35 | | df-id4 53 |
. 2
(a ≡4 (a ∩ b)) =
((a⊥ ∪ (a ∩ b))
∩ ((a ∩ b)⊥ ∪ (a ∩ (a ∩
b)))) |
| 36 | 33, 34, 35 | 3tr1 63 |
1
(a →4 (a ∩ b)) =
(a ≡4 (a ∩ b)) |