QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  lem4.6.6i1j2 GIF version

Theorem lem4.6.6i1j2 1093
Description: Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 1, and j is set to 2. (Contributed by Roy F. Longton, 1-Jul-2005.)
Assertion
Ref Expression
lem4.6.6i1j2 ((a1 b) ∪ (a2 b)) = (a0 b)

Proof of Theorem lem4.6.6i1j2
StepHypRef Expression
1 u12lem 771 1 ((a1 b) ∪ (a2 b)) = (a0 b)
Colors of variables: term
Syntax hints:   = wb 1  wo 6  0 wi0 11  1 wi1 12  2 wi2 13
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-i0 43  df-i1 44  df-i2 45  df-le1 130  df-le2 131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator