Proof of Theorem lem4.6.6i3j0
Step | Hyp | Ref
| Expression |
1 | | ax-a3 32 |
. . 3
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) ∪ (a⊥ ∪ b)) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ ((a ∩ (a⊥ ∪ b)) ∪ (a⊥ ∪ b))) |
2 | | ax-a3 32 |
. . . . 5
(((a ∩ (a⊥ ∪ b)) ∪ a⊥ ) ∪ b) = ((a ∩
(a⊥ ∪ b)) ∪ (a⊥ ∪ b)) |
3 | 2 | ax-r1 35 |
. . . 4
((a ∩ (a⊥ ∪ b)) ∪ (a⊥ ∪ b)) = (((a ∩
(a⊥ ∪ b)) ∪ a⊥ ) ∪ b) |
4 | 3 | lor 70 |
. . 3
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ ((a ∩ (a⊥ ∪ b)) ∪ (a⊥ ∪ b))) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (((a ∩ (a⊥ ∪ b)) ∪ a⊥ ) ∪ b)) |
5 | | ax-a2 31 |
. . . . . . 7
((a ∩ (a⊥ ∪ b)) ∪ a⊥ ) = (a⊥ ∪ (a ∩ (a⊥ ∪ b))) |
6 | | omln 446 |
. . . . . . 7
(a⊥ ∪ (a ∩ (a⊥ ∪ b))) = (a⊥ ∪ b) |
7 | 5, 6 | ax-r2 36 |
. . . . . 6
((a ∩ (a⊥ ∪ b)) ∪ a⊥ ) = (a⊥ ∪ b) |
8 | 7 | ax-r5 38 |
. . . . 5
(((a ∩ (a⊥ ∪ b)) ∪ a⊥ ) ∪ b) = ((a⊥ ∪ b) ∪ b) |
9 | 8 | lor 70 |
. . . 4
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (((a ∩ (a⊥ ∪ b)) ∪ a⊥ ) ∪ b)) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ ((a⊥ ∪ b) ∪ b)) |
10 | | leid 148 |
. . . . . . 7
(a⊥ ∪ b) ≤ (a⊥ ∪ b) |
11 | | leor 159 |
. . . . . . 7
b ≤ (a⊥ ∪ b) |
12 | 10, 11 | lel2or 170 |
. . . . . 6
((a⊥ ∪ b) ∪ b) ≤
(a⊥ ∪ b) |
13 | | leo 158 |
. . . . . 6
(a⊥ ∪ b) ≤ ((a⊥ ∪ b) ∪ b) |
14 | 12, 13 | lebi 145 |
. . . . 5
((a⊥ ∪ b) ∪ b) =
(a⊥ ∪ b) |
15 | 14 | lor 70 |
. . . 4
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ ((a⊥ ∪ b) ∪ b)) =
(((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ b)) |
16 | | leao1 162 |
. . . . . 6
(a⊥ ∩ b) ≤ (a⊥ ∪ b) |
17 | | leao1 162 |
. . . . . 6
(a⊥ ∩ b⊥ ) ≤ (a⊥ ∪ b) |
18 | 16, 17 | lel2or 170 |
. . . . 5
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ≤ (a⊥ ∪ b) |
19 | 18 | df-le2 131 |
. . . 4
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ b)) = (a⊥ ∪ b) |
20 | 9, 15, 19 | 3tr 65 |
. . 3
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (((a ∩ (a⊥ ∪ b)) ∪ a⊥ ) ∪ b)) = (a⊥ ∪ b) |
21 | 1, 4, 20 | 3tr 65 |
. 2
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) ∪ (a⊥ ∪ b)) = (a⊥ ∪ b) |
22 | | df-i3 46 |
. . 3
(a →3 b) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) |
23 | | df-i0 43 |
. . 3
(a →0 b) = (a⊥ ∪ b) |
24 | 22, 23 | 2or 72 |
. 2
((a →3 b) ∪ (a
→0 b)) = ((((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) ∪ (a⊥ ∪ b)) |
25 | 21, 24, 23 | 3tr1 63 |
1
((a →3 b) ∪ (a
→0 b)) = (a →0 b) |