Proof of Theorem lem4.6.6i2j4
Step | Hyp | Ref
| Expression |
1 | | ax-a2 31 |
. . . 4
(b ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ b) |
2 | 1 | ax-r5 38 |
. . 3
((b ∪ (a⊥ ∩ b⊥ )) ∪ (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ ))) = (((a⊥ ∩ b⊥ ) ∪ b) ∪ (((a
∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ ))) |
3 | | ax-a3 32 |
. . 3
(((a⊥ ∩
b⊥ ) ∪ b) ∪ (((a
∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ ))) = ((a⊥ ∩ b⊥ ) ∪ (b ∪ (((a
∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )))) |
4 | | ax-a3 32 |
. . . . . 6
((b ∪ ((a ∩ b) ∪
(a⊥ ∩ b))) ∪ ((a⊥ ∪ b) ∩ b⊥ )) = (b ∪ (((a
∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ ))) |
5 | 4 | ax-r1 35 |
. . . . 5
(b ∪ (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ ))) = ((b ∪ ((a
∩ b) ∪ (a⊥ ∩ b))) ∪ ((a⊥ ∪ b) ∩ b⊥ )) |
6 | 5 | lor 70 |
. . . 4
((a⊥ ∩ b⊥ ) ∪ (b ∪ (((a
∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )))) = ((a⊥ ∩ b⊥ ) ∪ ((b ∪ ((a
∩ b) ∪ (a⊥ ∩ b))) ∪ ((a⊥ ∪ b) ∩ b⊥ ))) |
7 | | ax-a2 31 |
. . . . . 6
(b ∪ ((a ∩ b) ∪
(a⊥ ∩ b))) = (((a
∩ b) ∪ (a⊥ ∩ b)) ∪ b) |
8 | 7 | ax-r5 38 |
. . . . 5
((b ∪ ((a ∩ b) ∪
(a⊥ ∩ b))) ∪ ((a⊥ ∪ b) ∩ b⊥ )) = ((((a ∩ b) ∪
(a⊥ ∩ b)) ∪ b)
∪ ((a⊥ ∪ b) ∩ b⊥ )) |
9 | 8 | lor 70 |
. . . 4
((a⊥ ∩ b⊥ ) ∪ ((b ∪ ((a
∩ b) ∪ (a⊥ ∩ b))) ∪ ((a⊥ ∪ b) ∩ b⊥ ))) = ((a⊥ ∩ b⊥ ) ∪ ((((a ∩ b) ∪
(a⊥ ∩ b)) ∪ b)
∪ ((a⊥ ∪ b) ∩ b⊥ ))) |
10 | | ax-a3 32 |
. . . . . 6
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ b)
∪ ((a⊥ ∪ b) ∩ b⊥ )) = (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (b
∪ ((a⊥ ∪ b) ∩ b⊥ ))) |
11 | 10 | lor 70 |
. . . . 5
((a⊥ ∩ b⊥ ) ∪ ((((a ∩ b) ∪
(a⊥ ∩ b)) ∪ b)
∪ ((a⊥ ∪ b) ∩ b⊥ ))) = ((a⊥ ∩ b⊥ ) ∪ (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (b
∪ ((a⊥ ∪ b) ∩ b⊥ )))) |
12 | | ancom 74 |
. . . . . . . . 9
((a⊥ ∪ b) ∩ b⊥ ) = (b⊥ ∩ (a⊥ ∪ b)) |
13 | 12 | lor 70 |
. . . . . . . 8
(b ∪ ((a⊥ ∪ b) ∩ b⊥ )) = (b ∪ (b⊥ ∩ (a⊥ ∪ b))) |
14 | | ax-a2 31 |
. . . . . . . . . 10
(a⊥ ∪ b) = (b ∪
a⊥ ) |
15 | 14 | lan 77 |
. . . . . . . . 9
(b⊥ ∩ (a⊥ ∪ b)) = (b⊥ ∩ (b ∪ a⊥ )) |
16 | 15 | lor 70 |
. . . . . . . 8
(b ∪ (b⊥ ∩ (a⊥ ∪ b))) = (b ∪
(b⊥ ∩ (b ∪ a⊥ ))) |
17 | | oml 445 |
. . . . . . . . 9
(b ∪ (b⊥ ∩ (b ∪ a⊥ ))) = (b ∪ a⊥ ) |
18 | | ax-a2 31 |
. . . . . . . . 9
(b ∪ a⊥ ) = (a⊥ ∪ b) |
19 | 17, 18 | ax-r2 36 |
. . . . . . . 8
(b ∪ (b⊥ ∩ (b ∪ a⊥ ))) = (a⊥ ∪ b) |
20 | 13, 16, 19 | 3tr 65 |
. . . . . . 7
(b ∪ ((a⊥ ∪ b) ∩ b⊥ )) = (a⊥ ∪ b) |
21 | 20 | lor 70 |
. . . . . 6
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (b
∪ ((a⊥ ∪ b) ∩ b⊥ ))) = (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∪ b)) |
22 | 21 | lor 70 |
. . . . 5
((a⊥ ∩ b⊥ ) ∪ (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (b
∪ ((a⊥ ∪ b) ∩ b⊥ )))) = ((a⊥ ∩ b⊥ ) ∪ (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∪ b))) |
23 | | leao1 162 |
. . . . . . 7
(a⊥ ∩ b⊥ ) ≤ (a⊥ ∪ b) |
24 | | leao4 165 |
. . . . . . . . 9
(a ∩ b) ≤ (a⊥ ∪ b) |
25 | | leao1 162 |
. . . . . . . . 9
(a⊥ ∩ b) ≤ (a⊥ ∪ b) |
26 | 24, 25 | lel2or 170 |
. . . . . . . 8
((a ∩ b) ∪ (a⊥ ∩ b)) ≤ (a⊥ ∪ b) |
27 | | leid 148 |
. . . . . . . 8
(a⊥ ∪ b) ≤ (a⊥ ∪ b) |
28 | 26, 27 | lel2or 170 |
. . . . . . 7
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∪ b)) ≤ (a⊥ ∪ b) |
29 | 23, 28 | lel2or 170 |
. . . . . 6
((a⊥ ∩ b⊥ ) ∪ (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∪ b))) ≤ (a⊥ ∪ b) |
30 | | leor 159 |
. . . . . . 7
(a⊥ ∪ b) ≤ (((a
∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∪ b)) |
31 | 30 | lerr 150 |
. . . . . 6
(a⊥ ∪ b) ≤ ((a⊥ ∩ b⊥ ) ∪ (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∪ b))) |
32 | 29, 31 | lebi 145 |
. . . . 5
((a⊥ ∩ b⊥ ) ∪ (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∪ b))) = (a⊥ ∪ b) |
33 | 11, 22, 32 | 3tr 65 |
. . . 4
((a⊥ ∩ b⊥ ) ∪ ((((a ∩ b) ∪
(a⊥ ∩ b)) ∪ b)
∪ ((a⊥ ∪ b) ∩ b⊥ ))) = (a⊥ ∪ b) |
34 | 6, 9, 33 | 3tr 65 |
. . 3
((a⊥ ∩ b⊥ ) ∪ (b ∪ (((a
∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )))) = (a⊥ ∪ b) |
35 | 2, 3, 34 | 3tr 65 |
. 2
((b ∪ (a⊥ ∩ b⊥ )) ∪ (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ ))) = (a⊥ ∪ b) |
36 | | df-i2 45 |
. . 3
(a →2 b) = (b ∪
(a⊥ ∩ b⊥ )) |
37 | | df-i4 47 |
. . 3
(a →4 b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ )) |
38 | 36, 37 | 2or 72 |
. 2
((a →2 b) ∪ (a
→4 b)) = ((b ∪ (a⊥ ∩ b⊥ )) ∪ (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥ ))) |
39 | | df-i0 43 |
. 2
(a →0 b) = (a⊥ ∪ b) |
40 | 35, 38, 39 | 3tr1 63 |
1
((a →2 b) ∪ (a
→4 b)) = (a →0 b) |