Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > mh2 | GIF version |
Description: Marsden-Herman distributive law. Corollary 3.3 of Beran, p. 259. (Contributed by NM, 10-Mar-2002.) |
Ref | Expression |
---|---|
marsden.1 | a C b |
marsden.2 | b C c |
marsden.3 | c C d |
marsden.4 | d C a |
Ref | Expression |
---|---|
mh2 | ((a ∪ b) ∩ (c ∪ d)) = (((a ∩ c) ∪ (a ∩ d)) ∪ ((b ∩ c) ∪ (b ∩ d))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marsden.1 | . 2 a C b | |
2 | marsden.4 | . . 3 d C a | |
3 | 2 | comcom 453 | . 2 a C d |
4 | marsden.2 | . . 3 b C c | |
5 | 4 | comcom 453 | . 2 c C b |
6 | marsden.3 | . 2 c C d | |
7 | 1, 3, 5, 6 | mh 879 | 1 ((a ∪ b) ∩ (c ∪ d)) = (((a ∩ c) ∪ (a ∩ d)) ∪ ((b ∩ c) ∪ (b ∩ d))) |
Colors of variables: term |
Syntax hints: = wb 1 C wc 3 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: mhcor1 888 |
Copyright terms: Public domain | W3C validator |