Proof of Theorem mhcor1
| Step | Hyp | Ref
| Expression |
| 1 | | anass 76 |
. . 3
((((b →2 c) ∩ (c
→1 d)) ∩ (a →1 b)) ∩ (d
→2 a)) = (((b →2 c) ∩ (c
→1 d)) ∩ ((a →1 b) ∩ (d
→2 a))) |
| 2 | | imp3 841 |
. . . 4
((b →2 c) ∩ (c
→1 d)) = ((b⊥ ∩ c⊥ ) ∪ (c ∩ d)) |
| 3 | | ancom 74 |
. . . . 5
((a →1 b) ∩ (d
→2 a)) = ((d →2 a) ∩ (a
→1 b)) |
| 4 | | imp3 841 |
. . . . 5
((d →2 a) ∩ (a
→1 b)) = ((d⊥ ∩ a⊥ ) ∪ (a ∩ b)) |
| 5 | 3, 4 | ax-r2 36 |
. . . 4
((a →1 b) ∩ (d
→2 a)) = ((d⊥ ∩ a⊥ ) ∪ (a ∩ b)) |
| 6 | 2, 5 | 2an 79 |
. . 3
(((b →2 c) ∩ (c
→1 d)) ∩ ((a →1 b) ∩ (d
→2 a))) = (((b⊥ ∩ c⊥ ) ∪ (c ∩ d))
∩ ((d⊥ ∩ a⊥ ) ∪ (a ∩ b))) |
| 7 | | leao3 164 |
. . . . . . . . 9
(c ∩ d) ≤ (b ∪
c) |
| 8 | | oran 87 |
. . . . . . . . 9
(b ∪ c) = (b⊥ ∩ c⊥
)⊥ |
| 9 | 7, 8 | lbtr 139 |
. . . . . . . 8
(c ∩ d) ≤ (b⊥ ∩ c⊥
)⊥ |
| 10 | 9 | lecom 180 |
. . . . . . 7
(c ∩ d) C (b⊥ ∩ c⊥
)⊥ |
| 11 | 10 | comcom7 460 |
. . . . . 6
(c ∩ d) C (b⊥ ∩ c⊥ ) |
| 12 | 11 | comcom 453 |
. . . . 5
(b⊥ ∩ c⊥ ) C (c ∩ d) |
| 13 | | leao2 163 |
. . . . . . . 8
(c ∩ d) ≤ (d ∪
a) |
| 14 | | oran 87 |
. . . . . . . 8
(d ∪ a) = (d⊥ ∩ a⊥
)⊥ |
| 15 | 13, 14 | lbtr 139 |
. . . . . . 7
(c ∩ d) ≤ (d⊥ ∩ a⊥
)⊥ |
| 16 | 15 | lecom 180 |
. . . . . 6
(c ∩ d) C (d⊥ ∩ a⊥
)⊥ |
| 17 | 16 | comcom7 460 |
. . . . 5
(c ∩ d) C (d⊥ ∩ a⊥ ) |
| 18 | | leao3 164 |
. . . . . . . . 9
(a ∩ b) ≤ (d ∪
a) |
| 19 | 18, 14 | lbtr 139 |
. . . . . . . 8
(a ∩ b) ≤ (d⊥ ∩ a⊥
)⊥ |
| 20 | 19 | lecom 180 |
. . . . . . 7
(a ∩ b) C (d⊥ ∩ a⊥
)⊥ |
| 21 | 20 | comcom7 460 |
. . . . . 6
(a ∩ b) C (d⊥ ∩ a⊥ ) |
| 22 | 21 | comcom 453 |
. . . . 5
(d⊥ ∩ a⊥ ) C (a ∩ b) |
| 23 | | leao2 163 |
. . . . . . . 8
(a ∩ b) ≤ (b ∪
c) |
| 24 | 23, 8 | lbtr 139 |
. . . . . . 7
(a ∩ b) ≤ (b⊥ ∩ c⊥
)⊥ |
| 25 | 24 | lecom 180 |
. . . . . 6
(a ∩ b) C (b⊥ ∩ c⊥
)⊥ |
| 26 | 25 | comcom7 460 |
. . . . 5
(a ∩ b) C (b⊥ ∩ c⊥ ) |
| 27 | 12, 17, 22, 26 | mh2 884 |
. . . 4
(((b⊥ ∩
c⊥ ) ∪ (c ∩ d))
∩ ((d⊥ ∩ a⊥ ) ∪ (a ∩ b))) =
((((b⊥ ∩ c⊥ ) ∩ (d⊥ ∩ a⊥ )) ∪ ((b⊥ ∩ c⊥ ) ∩ (a ∩ b)))
∪ (((c ∩ d) ∩ (d⊥ ∩ a⊥ )) ∪ ((c ∩ d) ∩
(a ∩ b)))) |
| 28 | | ancom 74 |
. . . . . . . 8
((c⊥ ∩ d⊥ ) ∩ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∩ (c⊥ ∩ d⊥ )) |
| 29 | | ancom 74 |
. . . . . . . . . 10
(b⊥ ∩ c⊥ ) = (c⊥ ∩ b⊥ ) |
| 30 | 29 | ran 78 |
. . . . . . . . 9
((b⊥ ∩ c⊥ ) ∩ (d⊥ ∩ a⊥ )) = ((c⊥ ∩ b⊥ ) ∩ (d⊥ ∩ a⊥ )) |
| 31 | | an4 86 |
. . . . . . . . 9
((c⊥ ∩ b⊥ ) ∩ (d⊥ ∩ a⊥ )) = ((c⊥ ∩ d⊥ ) ∩ (b⊥ ∩ a⊥ )) |
| 32 | | ancom 74 |
. . . . . . . . . 10
(b⊥ ∩ a⊥ ) = (a⊥ ∩ b⊥ ) |
| 33 | 32 | lan 77 |
. . . . . . . . 9
((c⊥ ∩ d⊥ ) ∩ (b⊥ ∩ a⊥ )) = ((c⊥ ∩ d⊥ ) ∩ (a⊥ ∩ b⊥ )) |
| 34 | 30, 31, 33 | 3tr 65 |
. . . . . . . 8
((b⊥ ∩ c⊥ ) ∩ (d⊥ ∩ a⊥ )) = ((c⊥ ∩ d⊥ ) ∩ (a⊥ ∩ b⊥ )) |
| 35 | | anass 76 |
. . . . . . . 8
(((a⊥ ∩
b⊥ ) ∩ c⊥ ) ∩ d⊥ ) = ((a⊥ ∩ b⊥ ) ∩ (c⊥ ∩ d⊥ )) |
| 36 | 28, 34, 35 | 3tr1 63 |
. . . . . . 7
((b⊥ ∩ c⊥ ) ∩ (d⊥ ∩ a⊥ )) = (((a⊥ ∩ b⊥ ) ∩ c⊥ ) ∩ d⊥ ) |
| 37 | | ancom 74 |
. . . . . . . 8
((b⊥ ∩ c⊥ ) ∩ (a ∩ b)) =
((a ∩ b) ∩ (b⊥ ∩ c⊥ )) |
| 38 | | anass 76 |
. . . . . . . 8
((a ∩ b) ∩ (b⊥ ∩ c⊥ )) = (a ∩ (b ∩
(b⊥ ∩ c⊥ ))) |
| 39 | | dff 101 |
. . . . . . . . . . . . 13
0 = (b ∩ b⊥ ) |
| 40 | 39 | ran 78 |
. . . . . . . . . . . 12
(0 ∩ c⊥ ) =
((b ∩ b⊥ ) ∩ c⊥ ) |
| 41 | 40 | ax-r1 35 |
. . . . . . . . . . 11
((b ∩ b⊥ ) ∩ c⊥ ) = (0 ∩ c⊥ ) |
| 42 | | anass 76 |
. . . . . . . . . . 11
((b ∩ b⊥ ) ∩ c⊥ ) = (b ∩ (b⊥ ∩ c⊥ )) |
| 43 | | an0r 109 |
. . . . . . . . . . 11
(0 ∩ c⊥ ) =
0 |
| 44 | 41, 42, 43 | 3tr2 64 |
. . . . . . . . . 10
(b ∩ (b⊥ ∩ c⊥ )) = 0 |
| 45 | 44 | lan 77 |
. . . . . . . . 9
(a ∩ (b ∩ (b⊥ ∩ c⊥ ))) = (a ∩ 0) |
| 46 | | an0 108 |
. . . . . . . . 9
(a ∩ 0) = 0 |
| 47 | 45, 46 | ax-r2 36 |
. . . . . . . 8
(a ∩ (b ∩ (b⊥ ∩ c⊥ ))) = 0 |
| 48 | 37, 38, 47 | 3tr 65 |
. . . . . . 7
((b⊥ ∩ c⊥ ) ∩ (a ∩ b)) =
0 |
| 49 | 36, 48 | 2or 72 |
. . . . . 6
(((b⊥ ∩
c⊥ ) ∩ (d⊥ ∩ a⊥ )) ∪ ((b⊥ ∩ c⊥ ) ∩ (a ∩ b))) =
((((a⊥ ∩ b⊥ ) ∩ c⊥ ) ∩ d⊥ ) ∪ 0) |
| 50 | | or0 102 |
. . . . . 6
((((a⊥ ∩
b⊥ ) ∩ c⊥ ) ∩ d⊥ ) ∪ 0) = (((a⊥ ∩ b⊥ ) ∩ c⊥ ) ∩ d⊥ ) |
| 51 | 49, 50 | ax-r2 36 |
. . . . 5
(((b⊥ ∩
c⊥ ) ∩ (d⊥ ∩ a⊥ )) ∪ ((b⊥ ∩ c⊥ ) ∩ (a ∩ b))) =
(((a⊥ ∩ b⊥ ) ∩ c⊥ ) ∩ d⊥ ) |
| 52 | | anass 76 |
. . . . . . . 8
((c ∩ d) ∩ (d⊥ ∩ a⊥ )) = (c ∩ (d ∩
(d⊥ ∩ a⊥ ))) |
| 53 | | anass 76 |
. . . . . . . . . . 11
((d ∩ d⊥ ) ∩ a⊥ ) = (d ∩ (d⊥ ∩ a⊥ )) |
| 54 | 53 | ax-r1 35 |
. . . . . . . . . 10
(d ∩ (d⊥ ∩ a⊥ )) = ((d ∩ d⊥ ) ∩ a⊥ ) |
| 55 | | an0r 109 |
. . . . . . . . . . . . 13
(0 ∩ a⊥ ) =
0 |
| 56 | 55 | ax-r1 35 |
. . . . . . . . . . . 12
0 = (0 ∩ a⊥
) |
| 57 | | dff 101 |
. . . . . . . . . . . . 13
0 = (d ∩ d⊥ ) |
| 58 | 57 | ran 78 |
. . . . . . . . . . . 12
(0 ∩ a⊥ ) =
((d ∩ d⊥ ) ∩ a⊥ ) |
| 59 | 56, 58 | ax-r2 36 |
. . . . . . . . . . 11
0 = ((d ∩ d⊥ ) ∩ a⊥ ) |
| 60 | 59 | ax-r1 35 |
. . . . . . . . . 10
((d ∩ d⊥ ) ∩ a⊥ ) = 0 |
| 61 | 54, 60 | ax-r2 36 |
. . . . . . . . 9
(d ∩ (d⊥ ∩ a⊥ )) = 0 |
| 62 | 61 | lan 77 |
. . . . . . . 8
(c ∩ (d ∩ (d⊥ ∩ a⊥ ))) = (c ∩ 0) |
| 63 | | an0 108 |
. . . . . . . 8
(c ∩ 0) = 0 |
| 64 | 52, 62, 63 | 3tr 65 |
. . . . . . 7
((c ∩ d) ∩ (d⊥ ∩ a⊥ )) = 0 |
| 65 | | ancom 74 |
. . . . . . . 8
((c ∩ d) ∩ (a
∩ b)) = ((a ∩ b) ∩
(c ∩ d)) |
| 66 | | anass 76 |
. . . . . . . . 9
(((a ∩ b) ∩ c)
∩ d) = ((a ∩ b) ∩
(c ∩ d)) |
| 67 | 66 | ax-r1 35 |
. . . . . . . 8
((a ∩ b) ∩ (c
∩ d)) = (((a ∩ b) ∩
c) ∩ d) |
| 68 | 65, 67 | ax-r2 36 |
. . . . . . 7
((c ∩ d) ∩ (a
∩ b)) = (((a ∩ b) ∩
c) ∩ d) |
| 69 | 64, 68 | 2or 72 |
. . . . . 6
(((c ∩ d) ∩ (d⊥ ∩ a⊥ )) ∪ ((c ∩ d) ∩
(a ∩ b))) = (0 ∪ (((a ∩ b) ∩
c) ∩ d)) |
| 70 | | or0r 103 |
. . . . . 6
(0 ∪ (((a ∩ b) ∩ c)
∩ d)) = (((a ∩ b) ∩
c) ∩ d) |
| 71 | 69, 70 | ax-r2 36 |
. . . . 5
(((c ∩ d) ∩ (d⊥ ∩ a⊥ )) ∪ ((c ∩ d) ∩
(a ∩ b))) = (((a
∩ b) ∩ c) ∩ d) |
| 72 | 51, 71 | 2or 72 |
. . . 4
((((b⊥ ∩
c⊥ ) ∩ (d⊥ ∩ a⊥ )) ∪ ((b⊥ ∩ c⊥ ) ∩ (a ∩ b)))
∪ (((c ∩ d) ∩ (d⊥ ∩ a⊥ )) ∪ ((c ∩ d) ∩
(a ∩ b)))) = ((((a⊥ ∩ b⊥ ) ∩ c⊥ ) ∩ d⊥ ) ∪ (((a ∩ b) ∩
c) ∩ d)) |
| 73 | | ax-a2 31 |
. . . 4
((((a⊥ ∩
b⊥ ) ∩ c⊥ ) ∩ d⊥ ) ∪ (((a ∩ b) ∩
c) ∩ d)) = ((((a
∩ b) ∩ c) ∩ d)
∪ (((a⊥ ∩ b⊥ ) ∩ c⊥ ) ∩ d⊥ )) |
| 74 | 27, 72, 73 | 3tr 65 |
. . 3
(((b⊥ ∩
c⊥ ) ∪ (c ∩ d))
∩ ((d⊥ ∩ a⊥ ) ∪ (a ∩ b))) =
((((a ∩ b) ∩ c)
∩ d) ∪ (((a⊥ ∩ b⊥ ) ∩ c⊥ ) ∩ d⊥ )) |
| 75 | 1, 6, 74 | 3tr 65 |
. 2
((((b →2 c) ∩ (c
→1 d)) ∩ (a →1 b)) ∩ (d
→2 a)) = ((((a ∩ b) ∩
c) ∩ d) ∪ (((a⊥ ∩ b⊥ ) ∩ c⊥ ) ∩ d⊥ )) |
| 76 | | anass 76 |
. . . 4
(((a →1 b) ∩ (b
→2 c)) ∩ (c →1 d)) = ((a
→1 b) ∩ ((b →2 c) ∩ (c
→1 d))) |
| 77 | | ancom 74 |
. . . 4
((a →1 b) ∩ ((b
→2 c) ∩ (c →1 d))) = (((b
→2 c) ∩ (c →1 d)) ∩ (a
→1 b)) |
| 78 | 76, 77 | ax-r2 36 |
. . 3
(((a →1 b) ∩ (b
→2 c)) ∩ (c →1 d)) = (((b
→2 c) ∩ (c →1 d)) ∩ (a
→1 b)) |
| 79 | 78 | ran 78 |
. 2
((((a →1 b) ∩ (b
→2 c)) ∩ (c →1 d)) ∩ (d
→2 a)) = ((((b →2 c) ∩ (c
→1 d)) ∩ (a →1 b)) ∩ (d
→2 a)) |
| 80 | | bi4 840 |
. 2
(((a ≡ b) ∩ (b
≡ c)) ∩ (c ≡ d)) =
((((a ∩ b) ∩ c)
∩ d) ∪ (((a⊥ ∩ b⊥ ) ∩ c⊥ ) ∩ d⊥ )) |
| 81 | 75, 79, 80 | 3tr1 63 |
1
((((a →1 b) ∩ (b
→2 c)) ∩ (c →1 d)) ∩ (d
→2 a)) = (((a ≡ b)
∩ (b ≡ c)) ∩ (c
≡ d)) |