QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  mhcor1 GIF version

Theorem mhcor1 888
Description: Corollary of Marsden-Herman Lemma. (Contributed by NM, 26-Jun-2003.)
Assertion
Ref Expression
mhcor1 ((((a1 b) ∩ (b2 c)) ∩ (c1 d)) ∩ (d2 a)) = (((ab) ∩ (bc)) ∩ (cd))

Proof of Theorem mhcor1
StepHypRef Expression
1 anass 76 . . 3 ((((b2 c) ∩ (c1 d)) ∩ (a1 b)) ∩ (d2 a)) = (((b2 c) ∩ (c1 d)) ∩ ((a1 b) ∩ (d2 a)))
2 imp3 841 . . . 4 ((b2 c) ∩ (c1 d)) = ((bc ) ∪ (cd))
3 ancom 74 . . . . 5 ((a1 b) ∩ (d2 a)) = ((d2 a) ∩ (a1 b))
4 imp3 841 . . . . 5 ((d2 a) ∩ (a1 b)) = ((da ) ∪ (ab))
53, 4ax-r2 36 . . . 4 ((a1 b) ∩ (d2 a)) = ((da ) ∪ (ab))
62, 52an 79 . . 3 (((b2 c) ∩ (c1 d)) ∩ ((a1 b) ∩ (d2 a))) = (((bc ) ∪ (cd)) ∩ ((da ) ∪ (ab)))
7 leao3 164 . . . . . . . . 9 (cd) ≤ (bc)
8 oran 87 . . . . . . . . 9 (bc) = (bc )
97, 8lbtr 139 . . . . . . . 8 (cd) ≤ (bc )
109lecom 180 . . . . . . 7 (cd) C (bc )
1110comcom7 460 . . . . . 6 (cd) C (bc )
1211comcom 453 . . . . 5 (bc ) C (cd)
13 leao2 163 . . . . . . . 8 (cd) ≤ (da)
14 oran 87 . . . . . . . 8 (da) = (da )
1513, 14lbtr 139 . . . . . . 7 (cd) ≤ (da )
1615lecom 180 . . . . . 6 (cd) C (da )
1716comcom7 460 . . . . 5 (cd) C (da )
18 leao3 164 . . . . . . . . 9 (ab) ≤ (da)
1918, 14lbtr 139 . . . . . . . 8 (ab) ≤ (da )
2019lecom 180 . . . . . . 7 (ab) C (da )
2120comcom7 460 . . . . . 6 (ab) C (da )
2221comcom 453 . . . . 5 (da ) C (ab)
23 leao2 163 . . . . . . . 8 (ab) ≤ (bc)
2423, 8lbtr 139 . . . . . . 7 (ab) ≤ (bc )
2524lecom 180 . . . . . 6 (ab) C (bc )
2625comcom7 460 . . . . 5 (ab) C (bc )
2712, 17, 22, 26mh2 884 . . . 4 (((bc ) ∪ (cd)) ∩ ((da ) ∪ (ab))) = ((((bc ) ∩ (da )) ∪ ((bc ) ∩ (ab))) ∪ (((cd) ∩ (da )) ∪ ((cd) ∩ (ab))))
28 ancom 74 . . . . . . . 8 ((cd ) ∩ (ab )) = ((ab ) ∩ (cd ))
29 ancom 74 . . . . . . . . . 10 (bc ) = (cb )
3029ran 78 . . . . . . . . 9 ((bc ) ∩ (da )) = ((cb ) ∩ (da ))
31 an4 86 . . . . . . . . 9 ((cb ) ∩ (da )) = ((cd ) ∩ (ba ))
32 ancom 74 . . . . . . . . . 10 (ba ) = (ab )
3332lan 77 . . . . . . . . 9 ((cd ) ∩ (ba )) = ((cd ) ∩ (ab ))
3430, 31, 333tr 65 . . . . . . . 8 ((bc ) ∩ (da )) = ((cd ) ∩ (ab ))
35 anass 76 . . . . . . . 8 (((ab ) ∩ c ) ∩ d ) = ((ab ) ∩ (cd ))
3628, 34, 353tr1 63 . . . . . . 7 ((bc ) ∩ (da )) = (((ab ) ∩ c ) ∩ d )
37 ancom 74 . . . . . . . 8 ((bc ) ∩ (ab)) = ((ab) ∩ (bc ))
38 anass 76 . . . . . . . 8 ((ab) ∩ (bc )) = (a ∩ (b ∩ (bc )))
39 dff 101 . . . . . . . . . . . . 13 0 = (bb )
4039ran 78 . . . . . . . . . . . 12 (0 ∩ c ) = ((bb ) ∩ c )
4140ax-r1 35 . . . . . . . . . . 11 ((bb ) ∩ c ) = (0 ∩ c )
42 anass 76 . . . . . . . . . . 11 ((bb ) ∩ c ) = (b ∩ (bc ))
43 an0r 109 . . . . . . . . . . 11 (0 ∩ c ) = 0
4441, 42, 433tr2 64 . . . . . . . . . 10 (b ∩ (bc )) = 0
4544lan 77 . . . . . . . . 9 (a ∩ (b ∩ (bc ))) = (a ∩ 0)
46 an0 108 . . . . . . . . 9 (a ∩ 0) = 0
4745, 46ax-r2 36 . . . . . . . 8 (a ∩ (b ∩ (bc ))) = 0
4837, 38, 473tr 65 . . . . . . 7 ((bc ) ∩ (ab)) = 0
4936, 482or 72 . . . . . 6 (((bc ) ∩ (da )) ∪ ((bc ) ∩ (ab))) = ((((ab ) ∩ c ) ∩ d ) ∪ 0)
50 or0 102 . . . . . 6 ((((ab ) ∩ c ) ∩ d ) ∪ 0) = (((ab ) ∩ c ) ∩ d )
5149, 50ax-r2 36 . . . . 5 (((bc ) ∩ (da )) ∪ ((bc ) ∩ (ab))) = (((ab ) ∩ c ) ∩ d )
52 anass 76 . . . . . . . 8 ((cd) ∩ (da )) = (c ∩ (d ∩ (da )))
53 anass 76 . . . . . . . . . . 11 ((dd ) ∩ a ) = (d ∩ (da ))
5453ax-r1 35 . . . . . . . . . 10 (d ∩ (da )) = ((dd ) ∩ a )
55 an0r 109 . . . . . . . . . . . . 13 (0 ∩ a ) = 0
5655ax-r1 35 . . . . . . . . . . . 12 0 = (0 ∩ a )
57 dff 101 . . . . . . . . . . . . 13 0 = (dd )
5857ran 78 . . . . . . . . . . . 12 (0 ∩ a ) = ((dd ) ∩ a )
5956, 58ax-r2 36 . . . . . . . . . . 11 0 = ((dd ) ∩ a )
6059ax-r1 35 . . . . . . . . . 10 ((dd ) ∩ a ) = 0
6154, 60ax-r2 36 . . . . . . . . 9 (d ∩ (da )) = 0
6261lan 77 . . . . . . . 8 (c ∩ (d ∩ (da ))) = (c ∩ 0)
63 an0 108 . . . . . . . 8 (c ∩ 0) = 0
6452, 62, 633tr 65 . . . . . . 7 ((cd) ∩ (da )) = 0
65 ancom 74 . . . . . . . 8 ((cd) ∩ (ab)) = ((ab) ∩ (cd))
66 anass 76 . . . . . . . . 9 (((ab) ∩ c) ∩ d) = ((ab) ∩ (cd))
6766ax-r1 35 . . . . . . . 8 ((ab) ∩ (cd)) = (((ab) ∩ c) ∩ d)
6865, 67ax-r2 36 . . . . . . 7 ((cd) ∩ (ab)) = (((ab) ∩ c) ∩ d)
6964, 682or 72 . . . . . 6 (((cd) ∩ (da )) ∪ ((cd) ∩ (ab))) = (0 ∪ (((ab) ∩ c) ∩ d))
70 or0r 103 . . . . . 6 (0 ∪ (((ab) ∩ c) ∩ d)) = (((ab) ∩ c) ∩ d)
7169, 70ax-r2 36 . . . . 5 (((cd) ∩ (da )) ∪ ((cd) ∩ (ab))) = (((ab) ∩ c) ∩ d)
7251, 712or 72 . . . 4 ((((bc ) ∩ (da )) ∪ ((bc ) ∩ (ab))) ∪ (((cd) ∩ (da )) ∪ ((cd) ∩ (ab)))) = ((((ab ) ∩ c ) ∩ d ) ∪ (((ab) ∩ c) ∩ d))
73 ax-a2 31 . . . 4 ((((ab ) ∩ c ) ∩ d ) ∪ (((ab) ∩ c) ∩ d)) = ((((ab) ∩ c) ∩ d) ∪ (((ab ) ∩ c ) ∩ d ))
7427, 72, 733tr 65 . . 3 (((bc ) ∪ (cd)) ∩ ((da ) ∪ (ab))) = ((((ab) ∩ c) ∩ d) ∪ (((ab ) ∩ c ) ∩ d ))
751, 6, 743tr 65 . 2 ((((b2 c) ∩ (c1 d)) ∩ (a1 b)) ∩ (d2 a)) = ((((ab) ∩ c) ∩ d) ∪ (((ab ) ∩ c ) ∩ d ))
76 anass 76 . . . 4 (((a1 b) ∩ (b2 c)) ∩ (c1 d)) = ((a1 b) ∩ ((b2 c) ∩ (c1 d)))
77 ancom 74 . . . 4 ((a1 b) ∩ ((b2 c) ∩ (c1 d))) = (((b2 c) ∩ (c1 d)) ∩ (a1 b))
7876, 77ax-r2 36 . . 3 (((a1 b) ∩ (b2 c)) ∩ (c1 d)) = (((b2 c) ∩ (c1 d)) ∩ (a1 b))
7978ran 78 . 2 ((((a1 b) ∩ (b2 c)) ∩ (c1 d)) ∩ (d2 a)) = ((((b2 c) ∩ (c1 d)) ∩ (a1 b)) ∩ (d2 a))
80 bi4 840 . 2 (((ab) ∩ (bc)) ∩ (cd)) = ((((ab) ∩ c) ∩ d) ∪ (((ab ) ∩ c ) ∩ d ))
8175, 79, 803tr1 63 1 ((((a1 b) ∩ (b2 c)) ∩ (c1 d)) ∩ (d2 a)) = (((ab) ∩ (bc)) ∩ (cd))
Colors of variables: term
Syntax hints:   = wb 1   wn 4  tb 5  wo 6  wa 7  0wf 9  1 wi1 12  2 wi2 13
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-i2 45  df-le1 130  df-le2 131  df-c1 132  df-c2 133
This theorem is referenced by:  oago3.29  889  oago3.21x  890
  Copyright terms: Public domain W3C validator