Proof of Theorem marsdenlem4
Step | Hyp | Ref
| Expression |
1 | | leao3 164 |
. . . . . 6
(b⊥ ∩ d) ≤ (a ∪
b⊥ ) |
2 | | oran1 91 |
. . . . . 6
(a ∪ b⊥ ) = (a⊥ ∩ b)⊥ |
3 | 1, 2 | lbtr 139 |
. . . . 5
(b⊥ ∩ d) ≤ (a⊥ ∩ b)⊥ |
4 | 3 | lecom 180 |
. . . 4
(b⊥ ∩ d) C (a⊥ ∩ b)⊥ |
5 | 4 | comcom7 460 |
. . 3
(b⊥ ∩ d) C (a⊥ ∩ b) |
6 | | leao4 165 |
. . . . . 6
(b⊥ ∩ d) ≤ (a⊥ ∪ d) |
7 | | oran2 92 |
. . . . . 6
(a⊥ ∪ d) = (a ∩
d⊥
)⊥ |
8 | 6, 7 | lbtr 139 |
. . . . 5
(b⊥ ∩ d) ≤ (a ∩
d⊥
)⊥ |
9 | 8 | lecom 180 |
. . . 4
(b⊥ ∩ d) C (a
∩ d⊥
)⊥ |
10 | 9 | comcom7 460 |
. . 3
(b⊥ ∩ d) C (a
∩ d⊥
) |
11 | 5, 10 | fh1r 473 |
. 2
(((a⊥ ∩
b) ∪ (a ∩ d⊥ )) ∩ (b⊥ ∩ d)) = (((a⊥ ∩ b) ∩ (b⊥ ∩ d)) ∪ ((a
∩ d⊥ ) ∩ (b⊥ ∩ d))) |
12 | | ancom 74 |
. . . . 5
(b⊥ ∩ d) = (d ∩
b⊥ ) |
13 | 12 | lan 77 |
. . . 4
((a⊥ ∩ b) ∩ (b⊥ ∩ d)) = ((a⊥ ∩ b) ∩ (d
∩ b⊥
)) |
14 | | an4 86 |
. . . 4
((a⊥ ∩ b) ∩ (d
∩ b⊥ )) = ((a⊥ ∩ d) ∩ (b
∩ b⊥
)) |
15 | | dff 101 |
. . . . . . 7
0 = (b ∩ b⊥ ) |
16 | 15 | lan 77 |
. . . . . 6
((a⊥ ∩ d) ∩ 0) = ((a⊥ ∩ d) ∩ (b
∩ b⊥
)) |
17 | 16 | ax-r1 35 |
. . . . 5
((a⊥ ∩ d) ∩ (b
∩ b⊥ )) = ((a⊥ ∩ d) ∩ 0) |
18 | | an0 108 |
. . . . 5
((a⊥ ∩ d) ∩ 0) = 0 |
19 | 17, 18 | ax-r2 36 |
. . . 4
((a⊥ ∩ d) ∩ (b
∩ b⊥ )) =
0 |
20 | 13, 14, 19 | 3tr 65 |
. . 3
((a⊥ ∩ b) ∩ (b⊥ ∩ d)) = 0 |
21 | | an4 86 |
. . . 4
((a ∩ d⊥ ) ∩ (b⊥ ∩ d)) = ((a ∩
b⊥ ) ∩ (d⊥ ∩ d)) |
22 | | ancom 74 |
. . . . . 6
(d⊥ ∩ d) = (d ∩
d⊥ ) |
23 | | dff 101 |
. . . . . . 7
0 = (d ∩ d⊥ ) |
24 | 23 | ax-r1 35 |
. . . . . 6
(d ∩ d⊥ ) = 0 |
25 | 22, 24 | ax-r2 36 |
. . . . 5
(d⊥ ∩ d) = 0 |
26 | 25 | lan 77 |
. . . 4
((a ∩ b⊥ ) ∩ (d⊥ ∩ d)) = ((a ∩
b⊥ ) ∩
0) |
27 | | an0 108 |
. . . 4
((a ∩ b⊥ ) ∩ 0) = 0 |
28 | 21, 26, 27 | 3tr 65 |
. . 3
((a ∩ d⊥ ) ∩ (b⊥ ∩ d)) = 0 |
29 | 20, 28 | 2or 72 |
. 2
(((a⊥ ∩
b) ∩ (b⊥ ∩ d)) ∪ ((a
∩ d⊥ ) ∩ (b⊥ ∩ d))) = (0 ∪ 0) |
30 | | or0 102 |
. 2
(0 ∪ 0) = 0 |
31 | 11, 29, 30 | 3tr 65 |
1
(((a⊥ ∩
b) ∪ (a ∩ d⊥ )) ∩ (b⊥ ∩ d)) = 0 |