Proof of Theorem mlaconjolem
Step | Hyp | Ref
| Expression |
1 | | orbile 843 |
. 2
((a ≡ c) ∪ (b
≡ c)) ≤ (((a ∩ b)
→2 c) ∩ (c →1 (a ∪ b))) |
2 | | df-i2 45 |
. . . . 5
((a ∩ b) →2 c) = (c ∪
((a ∩ b)⊥ ∩ c⊥ )) |
3 | | oran3 93 |
. . . . . . . 8
(a⊥ ∪ b⊥ ) = (a ∩ b)⊥ |
4 | 3 | ran 78 |
. . . . . . 7
((a⊥ ∪ b⊥ ) ∩ c⊥ ) = ((a ∩ b)⊥ ∩ c⊥ ) |
5 | 4 | lor 70 |
. . . . . 6
(c ∪ ((a⊥ ∪ b⊥ ) ∩ c⊥ )) = (c ∪ ((a
∩ b)⊥ ∩ c⊥ )) |
6 | 5 | ax-r1 35 |
. . . . 5
(c ∪ ((a ∩ b)⊥ ∩ c⊥ )) = (c ∪ ((a⊥ ∪ b⊥ ) ∩ c⊥ )) |
7 | 2, 6 | ax-r2 36 |
. . . 4
((a ∩ b) →2 c) = (c ∪
((a⊥ ∪ b⊥ ) ∩ c⊥ )) |
8 | | df-i1 44 |
. . . 4
(c →1 (a ∪ b)) =
(c⊥ ∪ (c ∩ (a ∪
b))) |
9 | 7, 8 | 2an 79 |
. . 3
(((a ∩ b) →2 c) ∩ (c
→1 (a ∪ b))) = ((c ∪
((a⊥ ∪ b⊥ ) ∩ c⊥ )) ∩ (c⊥ ∪ (c ∩ (a ∪
b)))) |
10 | | comor1 461 |
. . . . 5
(c ∪ ((a⊥ ∪ b⊥ ) ∩ c⊥ )) C c |
11 | 10 | comcom2 183 |
. . . 4
(c ∪ ((a⊥ ∪ b⊥ ) ∩ c⊥ )) C c⊥ |
12 | | leao1 162 |
. . . . . 6
(c ∩ (a ∪ b)) ≤
(c ∪ ((a⊥ ∪ b⊥ ) ∩ c⊥ )) |
13 | 12 | lecom 180 |
. . . . 5
(c ∩ (a ∪ b)) C
(c ∪ ((a⊥ ∪ b⊥ ) ∩ c⊥ )) |
14 | 13 | comcom 453 |
. . . 4
(c ∪ ((a⊥ ∪ b⊥ ) ∩ c⊥ )) C (c ∩ (a ∪
b)) |
15 | 11, 14 | fh1 469 |
. . 3
((c ∪ ((a⊥ ∪ b⊥ ) ∩ c⊥ )) ∩ (c⊥ ∪ (c ∩ (a ∪
b)))) = (((c ∪ ((a⊥ ∪ b⊥ ) ∩ c⊥ )) ∩ c⊥ ) ∪ ((c ∪ ((a⊥ ∪ b⊥ ) ∩ c⊥ )) ∩ (c ∩ (a ∪
b)))) |
16 | | ancom 74 |
. . . . . . . 8
((a⊥ ∪ b⊥ ) ∩ c⊥ ) = (c⊥ ∩ (a⊥ ∪ b⊥ )) |
17 | 16 | lor 70 |
. . . . . . 7
(c ∪ ((a⊥ ∪ b⊥ ) ∩ c⊥ )) = (c ∪ (c⊥ ∩ (a⊥ ∪ b⊥ ))) |
18 | 17 | ran 78 |
. . . . . 6
((c ∪ ((a⊥ ∪ b⊥ ) ∩ c⊥ )) ∩ c⊥ ) = ((c ∪ (c⊥ ∩ (a⊥ ∪ b⊥ ))) ∩ c⊥ ) |
19 | | ancom 74 |
. . . . . 6
((c ∪ (c⊥ ∩ (a⊥ ∪ b⊥ ))) ∩ c⊥ ) = (c⊥ ∩ (c ∪ (c⊥ ∩ (a⊥ ∪ b⊥ )))) |
20 | | omlan 448 |
. . . . . 6
(c⊥ ∩ (c ∪ (c⊥ ∩ (a⊥ ∪ b⊥ )))) = (c⊥ ∩ (a⊥ ∪ b⊥ )) |
21 | 18, 19, 20 | 3tr 65 |
. . . . 5
((c ∪ ((a⊥ ∪ b⊥ ) ∩ c⊥ )) ∩ c⊥ ) = (c⊥ ∩ (a⊥ ∪ b⊥ )) |
22 | | ancom 74 |
. . . . . 6
((c ∪ ((a⊥ ∪ b⊥ ) ∩ c⊥ )) ∩ (c ∩ (a ∪
b))) = ((c ∩ (a ∪
b)) ∩ (c ∪ ((a⊥ ∪ b⊥ ) ∩ c⊥ ))) |
23 | 12 | df2le2 136 |
. . . . . 6
((c ∩ (a ∪ b))
∩ (c ∪ ((a⊥ ∪ b⊥ ) ∩ c⊥ ))) = (c ∩ (a ∪
b)) |
24 | 22, 23 | ax-r2 36 |
. . . . 5
((c ∪ ((a⊥ ∪ b⊥ ) ∩ c⊥ )) ∩ (c ∩ (a ∪
b))) = (c ∩ (a ∪
b)) |
25 | 21, 24 | 2or 72 |
. . . 4
(((c ∪ ((a⊥ ∪ b⊥ ) ∩ c⊥ )) ∩ c⊥ ) ∪ ((c ∪ ((a⊥ ∪ b⊥ ) ∩ c⊥ )) ∩ (c ∩ (a ∪
b)))) = ((c⊥ ∩ (a⊥ ∪ b⊥ )) ∪ (c ∩ (a ∪
b))) |
26 | | ax-a2 31 |
. . . 4
((c⊥ ∩
(a⊥ ∪ b⊥ )) ∪ (c ∩ (a ∪
b))) = ((c ∩ (a ∪
b)) ∪ (c⊥ ∩ (a⊥ ∪ b⊥ ))) |
27 | 25, 26 | ax-r2 36 |
. . 3
(((c ∪ ((a⊥ ∪ b⊥ ) ∩ c⊥ )) ∩ c⊥ ) ∪ ((c ∪ ((a⊥ ∪ b⊥ ) ∩ c⊥ )) ∩ (c ∩ (a ∪
b)))) = ((c ∩ (a ∪
b)) ∪ (c⊥ ∩ (a⊥ ∪ b⊥ ))) |
28 | 9, 15, 27 | 3tr 65 |
. 2
(((a ∩ b) →2 c) ∩ (c
→1 (a ∪ b))) = ((c ∩
(a ∪ b)) ∪ (c⊥ ∩ (a⊥ ∪ b⊥ ))) |
29 | 1, 28 | lbtr 139 |
1
((a ≡ c) ∪ (b
≡ c)) ≤ ((c ∩ (a ∪
b)) ∪ (c⊥ ∩ (a⊥ ∪ b⊥ ))) |