Proof of Theorem mh
Step | Hyp | Ref
| Expression |
1 | | leao1 162 |
. . . . . 6
(a ∩ b) ≤ (a ∪
c) |
2 | | leao2 163 |
. . . . . 6
(a ∩ b) ≤ (b ∪
d) |
3 | 1, 2 | ler2an 173 |
. . . . 5
(a ∩ b) ≤ ((a
∪ c) ∩ (b ∪ d)) |
4 | | leao1 162 |
. . . . . 6
(a ∩ d) ≤ (a ∪
c) |
5 | | leao4 165 |
. . . . . 6
(a ∩ d) ≤ (b ∪
d) |
6 | 4, 5 | ler2an 173 |
. . . . 5
(a ∩ d) ≤ ((a
∪ c) ∩ (b ∪ d)) |
7 | 3, 6 | lel2or 170 |
. . . 4
((a ∩ b) ∪ (a
∩ d)) ≤ ((a ∪ c) ∩
(b ∪ d)) |
8 | | leao3 164 |
. . . . . 6
(c ∩ b) ≤ (a ∪
c) |
9 | | leao2 163 |
. . . . . 6
(c ∩ b) ≤ (b ∪
d) |
10 | 8, 9 | ler2an 173 |
. . . . 5
(c ∩ b) ≤ ((a
∪ c) ∩ (b ∪ d)) |
11 | | leao3 164 |
. . . . . 6
(c ∩ d) ≤ (a ∪
c) |
12 | | leao4 165 |
. . . . . 6
(c ∩ d) ≤ (b ∪
d) |
13 | 11, 12 | ler2an 173 |
. . . . 5
(c ∩ d) ≤ ((a
∪ c) ∩ (b ∪ d)) |
14 | 10, 13 | lel2or 170 |
. . . 4
((c ∩ b) ∪ (c
∩ d)) ≤ ((a ∪ c) ∩
(b ∪ d)) |
15 | 7, 14 | lel2or 170 |
. . 3
(((a ∩ b) ∪ (a
∩ d)) ∪ ((c ∩ b) ∪
(c ∩ d))) ≤ ((a
∪ c) ∩ (b ∪ d)) |
16 | | anass 76 |
. . . . . . 7
((((a ∪ c) ∩ (b
∪ d)) ∩ ((c⊥ ∪ b⊥ ) ∩ (a⊥ ∪ d⊥ ))) ∩ ((a ∩ b) ∪
(c ∩ d))⊥ ) = (((a ∪ c) ∩
(b ∪ d)) ∩ (((c⊥ ∪ b⊥ ) ∩ (a⊥ ∪ d⊥ )) ∩ ((a ∩ b) ∪
(c ∩ d))⊥ )) |
17 | 16 | ax-r1 35 |
. . . . . 6
(((a ∪ c) ∩ (b
∪ d)) ∩ (((c⊥ ∪ b⊥ ) ∩ (a⊥ ∪ d⊥ )) ∩ ((a ∩ b) ∪
(c ∩ d))⊥ )) = ((((a ∪ c) ∩
(b ∪ d)) ∩ ((c⊥ ∪ b⊥ ) ∩ (a⊥ ∪ d⊥ ))) ∩ ((a ∩ b) ∪
(c ∩ d))⊥ ) |
18 | | an4 86 |
. . . . . . . . 9
(((a ∪ c) ∩ (b
∪ d)) ∩ ((c⊥ ∪ b⊥ ) ∩ (a⊥ ∪ d⊥ ))) = (((a ∪ c) ∩
(c⊥ ∪ b⊥ )) ∩ ((b ∪ d) ∩
(a⊥ ∪ d⊥ ))) |
19 | | mh.1 |
. . . . . . . . . 10
a C c |
20 | | mh.2 |
. . . . . . . . . 10
a C d |
21 | | mh.3 |
. . . . . . . . . 10
b C c |
22 | | mh.4 |
. . . . . . . . . 10
b C d |
23 | 19, 20, 21, 22 | mhlem2 878 |
. . . . . . . . 9
(((a ∪ c) ∩ (c⊥ ∪ b⊥ )) ∩ ((b ∪ d) ∩
(a⊥ ∪ d⊥ ))) = (((a ∩ c⊥ ) ∩ (b ∩ d⊥ )) ∪ ((c ∩ b⊥ ) ∩ (d ∩ a⊥ ))) |
24 | 18, 23 | ax-r2 36 |
. . . . . . . 8
(((a ∪ c) ∩ (b
∪ d)) ∩ ((c⊥ ∪ b⊥ ) ∩ (a⊥ ∪ d⊥ ))) = (((a ∩ c⊥ ) ∩ (b ∩ d⊥ )) ∪ ((c ∩ b⊥ ) ∩ (d ∩ a⊥ ))) |
25 | | lea 160 |
. . . . . . . . . . 11
(a ∩ c⊥ ) ≤ a |
26 | | lea 160 |
. . . . . . . . . . 11
(b ∩ d⊥ ) ≤ b |
27 | 25, 26 | le2an 169 |
. . . . . . . . . 10
((a ∩ c⊥ ) ∩ (b ∩ d⊥ )) ≤ (a ∩ b) |
28 | | leo 158 |
. . . . . . . . . 10
(a ∩ b) ≤ ((a
∩ b) ∪ (c ∩ d)) |
29 | 27, 28 | letr 137 |
. . . . . . . . 9
((a ∩ c⊥ ) ∩ (b ∩ d⊥ )) ≤ ((a ∩ b) ∪
(c ∩ d)) |
30 | | lea 160 |
. . . . . . . . . . 11
(c ∩ b⊥ ) ≤ c |
31 | | lea 160 |
. . . . . . . . . . 11
(d ∩ a⊥ ) ≤ d |
32 | 30, 31 | le2an 169 |
. . . . . . . . . 10
((c ∩ b⊥ ) ∩ (d ∩ a⊥ )) ≤ (c ∩ d) |
33 | | leor 159 |
. . . . . . . . . 10
(c ∩ d) ≤ ((a
∩ b) ∪ (c ∩ d)) |
34 | 32, 33 | letr 137 |
. . . . . . . . 9
((c ∩ b⊥ ) ∩ (d ∩ a⊥ )) ≤ ((a ∩ b) ∪
(c ∩ d)) |
35 | 29, 34 | lel2or 170 |
. . . . . . . 8
(((a ∩ c⊥ ) ∩ (b ∩ d⊥ )) ∪ ((c ∩ b⊥ ) ∩ (d ∩ a⊥ ))) ≤ ((a ∩ b) ∪
(c ∩ d)) |
36 | 24, 35 | bltr 138 |
. . . . . . 7
(((a ∪ c) ∩ (b
∪ d)) ∩ ((c⊥ ∪ b⊥ ) ∩ (a⊥ ∪ d⊥ ))) ≤ ((a ∩ b) ∪
(c ∩ d)) |
37 | 36 | leran 153 |
. . . . . 6
((((a ∪ c) ∩ (b
∪ d)) ∩ ((c⊥ ∪ b⊥ ) ∩ (a⊥ ∪ d⊥ ))) ∩ ((a ∩ b) ∪
(c ∩ d))⊥ ) ≤ (((a ∩ b) ∪
(c ∩ d)) ∩ ((a
∩ b) ∪ (c ∩ d))⊥ ) |
38 | 17, 37 | bltr 138 |
. . . . 5
(((a ∪ c) ∩ (b
∪ d)) ∩ (((c⊥ ∪ b⊥ ) ∩ (a⊥ ∪ d⊥ )) ∩ ((a ∩ b) ∪
(c ∩ d))⊥ )) ≤ (((a ∩ b) ∪
(c ∩ d)) ∩ ((a
∩ b) ∪ (c ∩ d))⊥ ) |
39 | | anor3 90 |
. . . . . . . 8
(((c ∩ b) ∪ (a
∩ d))⊥ ∩
((a ∩ b) ∪ (c
∩ d))⊥ ) = (((c ∩ b) ∪
(a ∩ d)) ∪ ((a
∩ b) ∪ (c ∩ d)))⊥ |
40 | 39 | ax-r1 35 |
. . . . . . 7
(((c ∩ b) ∪ (a
∩ d)) ∪ ((a ∩ b) ∪
(c ∩ d)))⊥ = (((c ∩ b) ∪
(a ∩ d))⊥ ∩ ((a ∩ b) ∪
(c ∩ d))⊥ ) |
41 | | ax-a2 31 |
. . . . . . . . 9
(((a ∩ b) ∪ (a
∩ d)) ∪ ((c ∩ b) ∪
(c ∩ d))) = (((c
∩ b) ∪ (c ∩ d))
∪ ((a ∩ b) ∪ (a
∩ d))) |
42 | | or12 80 |
. . . . . . . . . . . 12
((c ∩ d) ∪ ((a
∩ b) ∪ (a ∩ d))) =
((a ∩ b) ∪ ((c
∩ d) ∪ (a ∩ d))) |
43 | | ax-a3 32 |
. . . . . . . . . . . . 13
(((a ∩ b) ∪ (c
∩ d)) ∪ (a ∩ d)) =
((a ∩ b) ∪ ((c
∩ d) ∪ (a ∩ d))) |
44 | 43 | ax-r1 35 |
. . . . . . . . . . . 12
((a ∩ b) ∪ ((c
∩ d) ∪ (a ∩ d))) =
(((a ∩ b) ∪ (c
∩ d)) ∪ (a ∩ d)) |
45 | | ax-a2 31 |
. . . . . . . . . . . 12
(((a ∩ b) ∪ (c
∩ d)) ∪ (a ∩ d)) =
((a ∩ d) ∪ ((a
∩ b) ∪ (c ∩ d))) |
46 | 42, 44, 45 | 3tr 65 |
. . . . . . . . . . 11
((c ∩ d) ∪ ((a
∩ b) ∪ (a ∩ d))) =
((a ∩ d) ∪ ((a
∩ b) ∪ (c ∩ d))) |
47 | 46 | lor 70 |
. . . . . . . . . 10
((c ∩ b) ∪ ((c
∩ d) ∪ ((a ∩ b) ∪
(a ∩ d)))) = ((c
∩ b) ∪ ((a ∩ d) ∪
((a ∩ b) ∪ (c
∩ d)))) |
48 | | ax-a3 32 |
. . . . . . . . . 10
(((c ∩ b) ∪ (c
∩ d)) ∪ ((a ∩ b) ∪
(a ∩ d))) = ((c ∩
b) ∪ ((c ∩ d) ∪
((a ∩ b) ∪ (a
∩ d)))) |
49 | | ax-a3 32 |
. . . . . . . . . 10
(((c ∩ b) ∪ (a
∩ d)) ∪ ((a ∩ b) ∪
(c ∩ d))) = ((c ∩
b) ∪ ((a ∩ d) ∪
((a ∩ b) ∪ (c
∩ d)))) |
50 | 47, 48, 49 | 3tr1 63 |
. . . . . . . . 9
(((c ∩ b) ∪ (c
∩ d)) ∪ ((a ∩ b) ∪
(a ∩ d))) = (((c
∩ b) ∪ (a ∩ d))
∪ ((a ∩ b) ∪ (c
∩ d))) |
51 | 41, 50 | ax-r2 36 |
. . . . . . . 8
(((a ∩ b) ∪ (a
∩ d)) ∪ ((c ∩ b) ∪
(c ∩ d))) = (((c
∩ b) ∪ (a ∩ d))
∪ ((a ∩ b) ∪ (c
∩ d))) |
52 | 51 | ax-r4 37 |
. . . . . . 7
(((a ∩ b) ∪ (a
∩ d)) ∪ ((c ∩ b) ∪
(c ∩ d)))⊥ = (((c ∩ b) ∪
(a ∩ d)) ∪ ((a
∩ b) ∪ (c ∩ d)))⊥ |
53 | | oran3 93 |
. . . . . . . . . 10
(c⊥ ∪ b⊥ ) = (c ∩ b)⊥ |
54 | | oran3 93 |
. . . . . . . . . 10
(a⊥ ∪ d⊥ ) = (a ∩ d)⊥ |
55 | 53, 54 | 2an 79 |
. . . . . . . . 9
((c⊥ ∪ b⊥ ) ∩ (a⊥ ∪ d⊥ )) = ((c ∩ b)⊥ ∩ (a ∩ d)⊥ ) |
56 | | anor3 90 |
. . . . . . . . 9
((c ∩ b)⊥ ∩ (a ∩ d)⊥ ) = ((c ∩ b) ∪
(a ∩ d))⊥ |
57 | 55, 56 | ax-r2 36 |
. . . . . . . 8
((c⊥ ∪ b⊥ ) ∩ (a⊥ ∪ d⊥ )) = ((c ∩ b) ∪
(a ∩ d))⊥ |
58 | 57 | ran 78 |
. . . . . . 7
(((c⊥ ∪
b⊥ ) ∩ (a⊥ ∪ d⊥ )) ∩ ((a ∩ b) ∪
(c ∩ d))⊥ ) = (((c ∩ b) ∪
(a ∩ d))⊥ ∩ ((a ∩ b) ∪
(c ∩ d))⊥ ) |
59 | 40, 52, 58 | 3tr1 63 |
. . . . . 6
(((a ∩ b) ∪ (a
∩ d)) ∪ ((c ∩ b) ∪
(c ∩ d)))⊥ = (((c⊥ ∪ b⊥ ) ∩ (a⊥ ∪ d⊥ )) ∩ ((a ∩ b) ∪
(c ∩ d))⊥ ) |
60 | 59 | lan 77 |
. . . . 5
(((a ∪ c) ∩ (b
∪ d)) ∩ (((a ∩ b) ∪
(a ∩ d)) ∪ ((c
∩ b) ∪ (c ∩ d)))⊥ ) = (((a ∪ c) ∩
(b ∪ d)) ∩ (((c⊥ ∪ b⊥ ) ∩ (a⊥ ∪ d⊥ )) ∩ ((a ∩ b) ∪
(c ∩ d))⊥ )) |
61 | | dff 101 |
. . . . 5
0 = (((a ∩ b) ∪ (c
∩ d)) ∩ ((a ∩ b) ∪
(c ∩ d))⊥ ) |
62 | 38, 60, 61 | le3tr1 140 |
. . . 4
(((a ∪ c) ∩ (b
∪ d)) ∩ (((a ∩ b) ∪
(a ∩ d)) ∪ ((c
∩ b) ∪ (c ∩ d)))⊥ ) ≤ 0 |
63 | | le0 147 |
. . . 4
0 ≤ (((a ∪ c) ∩ (b
∪ d)) ∩ (((a ∩ b) ∪
(a ∩ d)) ∪ ((c
∩ b) ∪ (c ∩ d)))⊥ ) |
64 | 62, 63 | lebi 145 |
. . 3
(((a ∪ c) ∩ (b
∪ d)) ∩ (((a ∩ b) ∪
(a ∩ d)) ∪ ((c
∩ b) ∪ (c ∩ d)))⊥ ) = 0 |
65 | 15, 64 | oml3 452 |
. 2
(((a ∩ b) ∪ (a
∩ d)) ∪ ((c ∩ b) ∪
(c ∩ d))) = ((a ∪
c) ∩ (b ∪ d)) |
66 | 65 | ax-r1 35 |
1
((a ∪ c) ∩ (b
∪ d)) = (((a ∩ b) ∪
(a ∩ d)) ∪ ((c
∩ b) ∪ (c ∩ d))) |