Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > mlaconj2 | GIF version |
Description: For 5GO proof of Mladen's conjecture. Hypothesis is 5GO law consequence. (Contributed by NM, 6-Jul-2000.) |
Ref | Expression |
---|---|
mlaconj2.1 | ((((a →1 (a ∩ b)) ∩ ((a ∩ b) →1 ((a ∩ b) ∪ c))) ∩ ((((a ∩ b) ∪ c) →1 c) ∩ (c →1 (a ∪ b)))) ∩ ((a ∪ b) →1 a)) ≤ (a ≡ c) |
Ref | Expression |
---|---|
mlaconj2 | ((a ≡ b) ∩ ((a ≡ c) ∪ (b ≡ c))) ≤ (a ≡ c) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mlaconj 845 | . 2 ((a ≡ b) ∩ ((a ≡ c) ∪ (b ≡ c))) ≤ ((((a →1 (a ∩ b)) ∩ ((a ∩ b) →1 ((a ∩ b) ∪ c))) ∩ ((((a ∩ b) ∪ c) →1 c) ∩ (c →1 (a ∪ b)))) ∩ ((a ∪ b) →1 a)) | |
2 | mlaconj2.1 | . 2 ((((a →1 (a ∩ b)) ∩ ((a ∩ b) →1 ((a ∩ b) ∪ c))) ∩ ((((a ∩ b) ∪ c) →1 c) ∩ (c →1 (a ∪ b)))) ∩ ((a ∪ b) →1 a)) ≤ (a ≡ c) | |
3 | 1, 2 | letr 137 | 1 ((a ≡ b) ∩ ((a ≡ c) ∪ (b ≡ c))) ≤ (a ≡ c) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ≡ tb 5 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |