QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  mlaconj GIF version

Theorem mlaconj 845
Description: For 5GO proof of Mladen's conjecture. (Contributed by NM, 20-Jan-2002.)
Assertion
Ref Expression
mlaconj ((ab) ∩ ((ac) ∪ (bc))) ≤ ((((a1 (ab)) ∩ ((ab) →1 ((ab) ∪ c))) ∩ ((((ab) ∪ c) →1 c) ∩ (c1 (ab)))) ∩ ((ab) →1 a))

Proof of Theorem mlaconj
StepHypRef Expression
1 orbile 843 . . 3 ((ac) ∪ (bc)) ≤ (((ab) →2 c) ∩ (c1 (ab)))
21lelan 167 . 2 ((ab) ∩ ((ac) ∪ (bc))) ≤ ((ab) ∩ (((ab) →2 c) ∩ (c1 (ab))))
3 ancom 74 . . . . . 6 (((ab) →1 a) ∩ ((((ab) →1 ((ab) ∪ c)) ∩ (((ab) ∪ c) →1 c)) ∩ (c1 (ab)))) = (((((ab) →1 ((ab) ∪ c)) ∩ (((ab) ∪ c) →1 c)) ∩ (c1 (ab))) ∩ ((ab) →1 a))
4 id 59 . . . . . . . . 9 (((ab) →1 ((ab) ∪ c)) ∩ (((ab) ∪ c) →1 c)) = (((ab) →1 ((ab) ∪ c)) ∩ (((ab) ∪ c) →1 c))
54ran 78 . . . . . . . 8 ((((ab) →1 ((ab) ∪ c)) ∩ (((ab) ∪ c) →1 c)) ∩ (c1 (ab))) = ((((ab) →1 ((ab) ∪ c)) ∩ (((ab) ∪ c) →1 c)) ∩ (c1 (ab)))
6 anass 76 . . . . . . . 8 ((((ab) →1 ((ab) ∪ c)) ∩ (((ab) ∪ c) →1 c)) ∩ (c1 (ab))) = (((ab) →1 ((ab) ∪ c)) ∩ ((((ab) ∪ c) →1 c) ∩ (c1 (ab))))
75, 6ax-r2 36 . . . . . . 7 ((((ab) →1 ((ab) ∪ c)) ∩ (((ab) ∪ c) →1 c)) ∩ (c1 (ab))) = (((ab) →1 ((ab) ∪ c)) ∩ ((((ab) ∪ c) →1 c) ∩ (c1 (ab))))
87ran 78 . . . . . 6 (((((ab) →1 ((ab) ∪ c)) ∩ (((ab) ∪ c) →1 c)) ∩ (c1 (ab))) ∩ ((ab) →1 a)) = ((((ab) →1 ((ab) ∪ c)) ∩ ((((ab) ∪ c) →1 c) ∩ (c1 (ab)))) ∩ ((ab) →1 a))
9 anass 76 . . . . . 6 ((((ab) →1 ((ab) ∪ c)) ∩ ((((ab) ∪ c) →1 c) ∩ (c1 (ab)))) ∩ ((ab) →1 a)) = (((ab) →1 ((ab) ∪ c)) ∩ (((((ab) ∪ c) →1 c) ∩ (c1 (ab))) ∩ ((ab) →1 a)))
103, 8, 93tr 65 . . . . 5 (((ab) →1 a) ∩ ((((ab) →1 ((ab) ∪ c)) ∩ (((ab) ∪ c) →1 c)) ∩ (c1 (ab)))) = (((ab) →1 ((ab) ∪ c)) ∩ (((((ab) ∪ c) →1 c) ∩ (c1 (ab))) ∩ ((ab) →1 a)))
1110lan 77 . . . 4 ((a1 (ab)) ∩ (((ab) →1 a) ∩ ((((ab) →1 ((ab) ∪ c)) ∩ (((ab) ∪ c) →1 c)) ∩ (c1 (ab))))) = ((a1 (ab)) ∩ (((ab) →1 ((ab) ∪ c)) ∩ (((((ab) ∪ c) →1 c) ∩ (c1 (ab))) ∩ ((ab) →1 a))))
12 anass 76 . . . 4 (((a1 (ab)) ∩ ((ab) →1 a)) ∩ ((((ab) →1 ((ab) ∪ c)) ∩ (((ab) ∪ c) →1 c)) ∩ (c1 (ab)))) = ((a1 (ab)) ∩ (((ab) →1 a) ∩ ((((ab) →1 ((ab) ∪ c)) ∩ (((ab) ∪ c) →1 c)) ∩ (c1 (ab)))))
13 anass 76 . . . 4 (((a1 (ab)) ∩ ((ab) →1 ((ab) ∪ c))) ∩ (((((ab) ∪ c) →1 c) ∩ (c1 (ab))) ∩ ((ab) →1 a))) = ((a1 (ab)) ∩ (((ab) →1 ((ab) ∪ c)) ∩ (((((ab) ∪ c) →1 c) ∩ (c1 (ab))) ∩ ((ab) →1 a))))
1411, 12, 133tr1 63 . . 3 (((a1 (ab)) ∩ ((ab) →1 a)) ∩ ((((ab) →1 ((ab) ∪ c)) ∩ (((ab) ∪ c) →1 c)) ∩ (c1 (ab)))) = (((a1 (ab)) ∩ ((ab) →1 ((ab) ∪ c))) ∩ (((((ab) ∪ c) →1 c) ∩ (c1 (ab))) ∩ ((ab) →1 a)))
15 bi1o1a 798 . . . 4 (ab) = ((a1 (ab)) ∩ ((ab) →1 a))
16 i2i1i1 800 . . . . 5 ((ab) →2 c) = (((ab) →1 ((ab) ∪ c)) ∩ (((ab) ∪ c) →1 c))
1716ran 78 . . . 4 (((ab) →2 c) ∩ (c1 (ab))) = ((((ab) →1 ((ab) ∪ c)) ∩ (((ab) ∪ c) →1 c)) ∩ (c1 (ab)))
1815, 172an 79 . . 3 ((ab) ∩ (((ab) →2 c) ∩ (c1 (ab)))) = (((a1 (ab)) ∩ ((ab) →1 a)) ∩ ((((ab) →1 ((ab) ∪ c)) ∩ (((ab) ∪ c) →1 c)) ∩ (c1 (ab))))
19 anass 76 . . 3 ((((a1 (ab)) ∩ ((ab) →1 ((ab) ∪ c))) ∩ ((((ab) ∪ c) →1 c) ∩ (c1 (ab)))) ∩ ((ab) →1 a)) = (((a1 (ab)) ∩ ((ab) →1 ((ab) ∪ c))) ∩ (((((ab) ∪ c) →1 c) ∩ (c1 (ab))) ∩ ((ab) →1 a)))
2014, 18, 193tr1 63 . 2 ((ab) ∩ (((ab) →2 c) ∩ (c1 (ab)))) = ((((a1 (ab)) ∩ ((ab) →1 ((ab) ∪ c))) ∩ ((((ab) ∪ c) →1 c) ∩ (c1 (ab)))) ∩ ((ab) →1 a))
212, 20lbtr 139 1 ((ab) ∩ ((ac) ∪ (bc))) ≤ ((((a1 (ab)) ∩ ((ab) →1 ((ab) ∪ c))) ∩ ((((ab) ∪ c) →1 c) ∩ (c1 (ab)))) ∩ ((ab) →1 a))
Colors of variables: term
Syntax hints:  wle 2  tb 5  wo 6  wa 7  1 wi1 12  2 wi2 13
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-i2 45  df-le1 130  df-le2 131  df-c1 132  df-c2 133
This theorem is referenced by:  mlaconj2  846
  Copyright terms: Public domain W3C validator