| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > neg3ant1 | GIF version | ||
| Description: Lemma for negated antecedent identity. (Contributed by NM, 7-Aug-2001.) |
| Ref | Expression |
|---|---|
| neg3ant.1 | (a →3 c) = (b →3 c) |
| Ref | Expression |
|---|---|
| neg3ant1 | (a →1 c) = (b →1 c) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg3ant.1 | . . . . . 6 (a →3 c) = (b →3 c) | |
| 2 | 1 | neg3antlem2 865 | . . . . 5 a⊥ ≤ (b →1 c) |
| 3 | 1 | neg3antlem1 864 | . . . . 5 (a ∩ c) ≤ (b →1 c) |
| 4 | 2, 3 | lel2or 170 | . . . 4 (a⊥ ∪ (a ∩ c)) ≤ (b →1 c) |
| 5 | df-i1 44 | . . . 4 (b →1 c) = (b⊥ ∪ (b ∩ c)) | |
| 6 | 4, 5 | lbtr 139 | . . 3 (a⊥ ∪ (a ∩ c)) ≤ (b⊥ ∪ (b ∩ c)) |
| 7 | 1 | ax-r1 35 | . . . . . 6 (b →3 c) = (a →3 c) |
| 8 | 7 | neg3antlem2 865 | . . . . 5 b⊥ ≤ (a →1 c) |
| 9 | 7 | neg3antlem1 864 | . . . . 5 (b ∩ c) ≤ (a →1 c) |
| 10 | 8, 9 | lel2or 170 | . . . 4 (b⊥ ∪ (b ∩ c)) ≤ (a →1 c) |
| 11 | df-i1 44 | . . . 4 (a →1 c) = (a⊥ ∪ (a ∩ c)) | |
| 12 | 10, 11 | lbtr 139 | . . 3 (b⊥ ∪ (b ∩ c)) ≤ (a⊥ ∪ (a ∩ c)) |
| 13 | 6, 12 | lebi 145 | . 2 (a⊥ ∪ (a ∩ c)) = (b⊥ ∪ (b ∩ c)) |
| 14 | 13, 11, 5 | 3tr1 63 | 1 (a →1 c) = (b →1 c) |
| Colors of variables: term |
| Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 →3 wi3 14 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i3 46 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |