| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > neg3antlem1 | GIF version | ||
| Description: Lemma for negated antecedent identity. (Contributed by NM, 7-Aug-2001.) |
| Ref | Expression |
|---|---|
| neg3ant.1 | (a →3 c) = (b →3 c) |
| Ref | Expression |
|---|---|
| neg3antlem1 | (a ∩ c) ≤ (b →1 c) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leo 158 | . . 3 (a ∩ c) ≤ ((a ∩ c) ∪ (a⊥ ∩ c)) | |
| 2 | neg3ant.1 | . . . . . 6 (a →3 c) = (b →3 c) | |
| 3 | 2 | ran 78 | . . . . 5 ((a →3 c) ∩ c) = ((b →3 c) ∩ c) |
| 4 | u3lemab 612 | . . . . 5 ((a →3 c) ∩ c) = ((a ∩ c) ∪ (a⊥ ∩ c)) | |
| 5 | u3lemab 612 | . . . . 5 ((b →3 c) ∩ c) = ((b ∩ c) ∪ (b⊥ ∩ c)) | |
| 6 | 3, 4, 5 | 3tr2 64 | . . . 4 ((a ∩ c) ∪ (a⊥ ∩ c)) = ((b ∩ c) ∪ (b⊥ ∩ c)) |
| 7 | u1lemab 610 | . . . . 5 ((b →1 c) ∩ c) = ((b ∩ c) ∪ (b⊥ ∩ c)) | |
| 8 | 7 | ax-r1 35 | . . . 4 ((b ∩ c) ∪ (b⊥ ∩ c)) = ((b →1 c) ∩ c) |
| 9 | 6, 8 | ax-r2 36 | . . 3 ((a ∩ c) ∪ (a⊥ ∩ c)) = ((b →1 c) ∩ c) |
| 10 | 1, 9 | lbtr 139 | . 2 (a ∩ c) ≤ ((b →1 c) ∩ c) |
| 11 | lea 160 | . 2 ((b →1 c) ∩ c) ≤ (b →1 c) | |
| 12 | 10, 11 | letr 137 | 1 (a ∩ c) ≤ (b →1 c) |
| Colors of variables: term |
| Syntax hints: = wb 1 ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 →3 wi3 14 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i3 46 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: neg3ant1 866 |
| Copyright terms: Public domain | W3C validator |