Proof of Theorem elimconslem
Step | Hyp | Ref
| Expression |
1 | | df-t 41 |
. . . . . . 7
1 = ((b ∪ c⊥ ) ∪ (b ∪ c⊥ )⊥
) |
2 | | elimcons.2 |
. . . . . . . . . 10
(a ∩ c) ≤ (b ∪
c⊥ ) |
3 | 2 | lecon 154 |
. . . . . . . . 9
(b ∪ c⊥ )⊥ ≤
(a ∩ c)⊥ |
4 | | oran3 93 |
. . . . . . . . . 10
(a⊥ ∪ c⊥ ) = (a ∩ c)⊥ |
5 | 4 | ax-r1 35 |
. . . . . . . . 9
(a ∩ c)⊥ = (a⊥ ∪ c⊥ ) |
6 | 3, 5 | lbtr 139 |
. . . . . . . 8
(b ∪ c⊥ )⊥ ≤
(a⊥ ∪ c⊥ ) |
7 | 6 | lelor 166 |
. . . . . . 7
((b ∪ c⊥ ) ∪ (b ∪ c⊥ )⊥ ) ≤
((b ∪ c⊥ ) ∪ (a⊥ ∪ c⊥ )) |
8 | 1, 7 | bltr 138 |
. . . . . 6
1 ≤ ((b ∪ c⊥ ) ∪ (a⊥ ∪ c⊥ )) |
9 | 8 | lelan 167 |
. . . . 5
(a ∩ 1) ≤ (a ∩ ((b
∪ c⊥ ) ∪ (a⊥ ∪ c⊥ ))) |
10 | | an1 106 |
. . . . 5
(a ∩ 1) = a |
11 | | comor1 461 |
. . . . . . 7
(a⊥ ∪ c⊥ ) C a⊥ |
12 | 11 | comcom7 460 |
. . . . . 6
(a⊥ ∪ c⊥ ) C a |
13 | | df-a 40 |
. . . . . . . . . 10
(a ∩ c) = (a⊥ ∪ c⊥
)⊥ |
14 | 13 | ax-r1 35 |
. . . . . . . . 9
(a⊥ ∪ c⊥ )⊥ = (a ∩ c) |
15 | 14, 2 | bltr 138 |
. . . . . . . 8
(a⊥ ∪ c⊥ )⊥ ≤
(b ∪ c⊥ ) |
16 | 15 | lecom 180 |
. . . . . . 7
(a⊥ ∪ c⊥ )⊥ C
(b ∪ c⊥ ) |
17 | 16 | comcom6 459 |
. . . . . 6
(a⊥ ∪ c⊥ ) C (b ∪ c⊥ ) |
18 | 12, 17 | fh2c 477 |
. . . . 5
(a ∩ ((b ∪ c⊥ ) ∪ (a⊥ ∪ c⊥ ))) = ((a ∩ (b ∪
c⊥ )) ∪ (a ∩ (a⊥ ∪ c⊥ ))) |
19 | 9, 10, 18 | le3tr2 141 |
. . . 4
a ≤ ((a ∩ (b ∪
c⊥ )) ∪ (a ∩ (a⊥ ∪ c⊥ ))) |
20 | | elimcons.1 |
. . . . . . . . 9
(a →1 c) = (b
→1 c) |
21 | | df-i1 44 |
. . . . . . . . 9
(a →1 c) = (a⊥ ∪ (a ∩ c)) |
22 | | df-i1 44 |
. . . . . . . . 9
(b →1 c) = (b⊥ ∪ (b ∩ c)) |
23 | 20, 21, 22 | 3tr2 64 |
. . . . . . . 8
(a⊥ ∪ (a ∩ c)) =
(b⊥ ∪ (b ∩ c)) |
24 | 13 | lor 70 |
. . . . . . . 8
(a⊥ ∪ (a ∩ c)) =
(a⊥ ∪ (a⊥ ∪ c⊥ )⊥
) |
25 | | df-a 40 |
. . . . . . . . 9
(b ∩ c) = (b⊥ ∪ c⊥
)⊥ |
26 | 25 | lor 70 |
. . . . . . . 8
(b⊥ ∪ (b ∩ c)) =
(b⊥ ∪ (b⊥ ∪ c⊥ )⊥
) |
27 | 23, 24, 26 | 3tr2 64 |
. . . . . . 7
(a⊥ ∪ (a⊥ ∪ c⊥ )⊥ ) =
(b⊥ ∪ (b⊥ ∪ c⊥ )⊥
) |
28 | 27 | ax-r4 37 |
. . . . . 6
(a⊥ ∪ (a⊥ ∪ c⊥ )⊥
)⊥ = (b⊥
∪ (b⊥ ∪ c⊥ )⊥
)⊥ |
29 | | df-a 40 |
. . . . . 6
(a ∩ (a⊥ ∪ c⊥ )) = (a⊥ ∪ (a⊥ ∪ c⊥ )⊥
)⊥ |
30 | | df-a 40 |
. . . . . 6
(b ∩ (b⊥ ∪ c⊥ )) = (b⊥ ∪ (b⊥ ∪ c⊥ )⊥
)⊥ |
31 | 28, 29, 30 | 3tr1 63 |
. . . . 5
(a ∩ (a⊥ ∪ c⊥ )) = (b ∩ (b⊥ ∪ c⊥ )) |
32 | 31 | lor 70 |
. . . 4
((a ∩ (b ∪ c⊥ )) ∪ (a ∩ (a⊥ ∪ c⊥ ))) = ((a ∩ (b ∪
c⊥ )) ∪ (b ∩ (b⊥ ∪ c⊥ ))) |
33 | 19, 32 | lbtr 139 |
. . 3
a ≤ ((a ∩ (b ∪
c⊥ )) ∪ (b ∩ (b⊥ ∪ c⊥ ))) |
34 | | lear 161 |
. . . 4
(a ∩ (b ∪ c⊥ )) ≤ (b ∪ c⊥ ) |
35 | 34 | leror 152 |
. . 3
((a ∩ (b ∪ c⊥ )) ∪ (b ∩ (b⊥ ∪ c⊥ ))) ≤ ((b ∪ c⊥ ) ∪ (b ∩ (b⊥ ∪ c⊥ ))) |
36 | 33, 35 | letr 137 |
. 2
a ≤ ((b ∪ c⊥ ) ∪ (b ∩ (b⊥ ∪ c⊥ ))) |
37 | | ax-a2 31 |
. . 3
((b ∪ c⊥ ) ∪ (b ∩ (b⊥ ∪ c⊥ ))) = ((b ∩ (b⊥ ∪ c⊥ )) ∪ (b ∪ c⊥ )) |
38 | | leao1 162 |
. . . 4
(b ∩ (b⊥ ∪ c⊥ )) ≤ (b ∪ c⊥ ) |
39 | 38 | df-le2 131 |
. . 3
((b ∩ (b⊥ ∪ c⊥ )) ∪ (b ∪ c⊥ )) = (b ∪ c⊥ ) |
40 | 37, 39 | ax-r2 36 |
. 2
((b ∪ c⊥ ) ∪ (b ∩ (b⊥ ∪ c⊥ ))) = (b ∪ c⊥ ) |
41 | 36, 40 | lbtr 139 |
1
a ≤ (b ∪ c⊥ ) |