Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > negant5 | GIF version |
Description: Negated antecedent identity. (Contributed by NM, 6-Aug-2001.) |
Ref | Expression |
---|---|
negant.1 | (a →1 c) = (b →1 c) |
Ref | Expression |
---|---|
negant5 | (a⊥ →5 c) = (b⊥ →5 c) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negant.1 | . . . 4 (a →1 c) = (b →1 c) | |
2 | 1 | negant2 858 | . . 3 (a⊥ →2 c) = (b⊥ →2 c) |
3 | 1 | negant4 862 | . . 3 (a⊥ →4 c) = (b⊥ →4 c) |
4 | 2, 3 | 2an 79 | . 2 ((a⊥ →2 c) ∩ (a⊥ →4 c)) = ((b⊥ →2 c) ∩ (b⊥ →4 c)) |
5 | u24lem 770 | . 2 ((a⊥ →2 c) ∩ (a⊥ →4 c)) = (a⊥ →5 c) | |
6 | u24lem 770 | . 2 ((b⊥ →2 c) ∩ (b⊥ →4 c)) = (b⊥ →5 c) | |
7 | 4, 5, 6 | 3tr2 64 | 1 (a⊥ →5 c) = (b⊥ →5 c) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∩ wa 7 →1 wi1 12 →2 wi2 13 →4 wi4 15 →5 wi5 16 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-i3 46 df-i4 47 df-i5 48 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |