Proof of Theorem negantlem9
Step | Hyp | Ref
| Expression |
1 | | leao4 165 |
. . . . 5
(a⊥ ∩ c) ≤ (b⊥ ∪ c) |
2 | | leor 159 |
. . . . . 6
(a⊥ ∩ c) ≤ (a ∪
(a⊥ ∩ c)) |
3 | | negant.1 |
. . . . . . . . 9
(a →1 c) = (b
→1 c) |
4 | 3 | sac 835 |
. . . . . . . 8
(a⊥ →1
c) = (b⊥ →1 c) |
5 | | df-i1 44 |
. . . . . . . . 9
(a⊥ →1
c) = (a⊥ ⊥ ∪
(a⊥ ∩ c)) |
6 | | ax-a1 30 |
. . . . . . . . . . 11
a = a⊥
⊥ |
7 | 6 | ax-r5 38 |
. . . . . . . . . 10
(a ∪ (a⊥ ∩ c)) = (a⊥ ⊥ ∪
(a⊥ ∩ c)) |
8 | 7 | ax-r1 35 |
. . . . . . . . 9
(a⊥
⊥ ∪ (a⊥ ∩ c)) = (a ∪
(a⊥ ∩ c)) |
9 | 5, 8 | ax-r2 36 |
. . . . . . . 8
(a⊥ →1
c) = (a ∪ (a⊥ ∩ c)) |
10 | | df-i1 44 |
. . . . . . . . 9
(b⊥ →1
c) = (b⊥ ⊥ ∪
(b⊥ ∩ c)) |
11 | | ax-a1 30 |
. . . . . . . . . . 11
b = b⊥
⊥ |
12 | 11 | ax-r5 38 |
. . . . . . . . . 10
(b ∪ (b⊥ ∩ c)) = (b⊥ ⊥ ∪
(b⊥ ∩ c)) |
13 | 12 | ax-r1 35 |
. . . . . . . . 9
(b⊥
⊥ ∪ (b⊥ ∩ c)) = (b ∪
(b⊥ ∩ c)) |
14 | 10, 13 | ax-r2 36 |
. . . . . . . 8
(b⊥ →1
c) = (b ∪ (b⊥ ∩ c)) |
15 | 4, 9, 14 | 3tr2 64 |
. . . . . . 7
(a ∪ (a⊥ ∩ c)) = (b ∪
(b⊥ ∩ c)) |
16 | | leo 158 |
. . . . . . . 8
b ≤ (b ∪ (b⊥ ∩ c⊥ )) |
17 | 16 | leror 152 |
. . . . . . 7
(b ∪ (b⊥ ∩ c)) ≤ ((b
∪ (b⊥ ∩ c⊥ )) ∪ (b⊥ ∩ c)) |
18 | 15, 17 | bltr 138 |
. . . . . 6
(a ∪ (a⊥ ∩ c)) ≤ ((b
∪ (b⊥ ∩ c⊥ )) ∪ (b⊥ ∩ c)) |
19 | 2, 18 | letr 137 |
. . . . 5
(a⊥ ∩ c) ≤ ((b
∪ (b⊥ ∩ c⊥ )) ∪ (b⊥ ∩ c)) |
20 | 1, 19 | ler2an 173 |
. . . 4
(a⊥ ∩ c) ≤ ((b⊥ ∪ c) ∩ ((b
∪ (b⊥ ∩ c⊥ )) ∪ (b⊥ ∩ c))) |
21 | | leao1 162 |
. . . . . 6
(a⊥ ∩ c⊥ ) ≤ (a⊥ ∪ c) |
22 | 3 | negantlem8 856 |
. . . . . 6
(a⊥ ∪ c) = (b⊥ ∪ c) |
23 | 21, 22 | lbtr 139 |
. . . . 5
(a⊥ ∩ c⊥ ) ≤ (b⊥ ∪ c) |
24 | 3 | negantlem5 853 |
. . . . . 6
(a⊥ ∩ c⊥ ) = (b⊥ ∩ c⊥ ) |
25 | | leor 159 |
. . . . . . 7
(b⊥ ∩ c⊥ ) ≤ (b ∪ (b⊥ ∩ c⊥ )) |
26 | 25 | ler 149 |
. . . . . 6
(b⊥ ∩ c⊥ ) ≤ ((b ∪ (b⊥ ∩ c⊥ )) ∪ (b⊥ ∩ c)) |
27 | 24, 26 | bltr 138 |
. . . . 5
(a⊥ ∩ c⊥ ) ≤ ((b ∪ (b⊥ ∩ c⊥ )) ∪ (b⊥ ∩ c)) |
28 | 23, 27 | ler2an 173 |
. . . 4
(a⊥ ∩ c⊥ ) ≤ ((b⊥ ∪ c) ∩ ((b
∪ (b⊥ ∩ c⊥ )) ∪ (b⊥ ∩ c))) |
29 | 20, 28 | lel2or 170 |
. . 3
((a⊥ ∩ c) ∪ (a⊥ ∩ c⊥ )) ≤ ((b⊥ ∪ c) ∩ ((b
∪ (b⊥ ∩ c⊥ )) ∪ (b⊥ ∩ c))) |
30 | | lear 161 |
. . . . 5
(a ∩ (a⊥ ∪ c)) ≤ (a⊥ ∪ c) |
31 | 30, 22 | lbtr 139 |
. . . 4
(a ∩ (a⊥ ∪ c)) ≤ (b⊥ ∪ c) |
32 | | leo 158 |
. . . . . . 7
a ≤ (a ∪ (a⊥ ∩ c)) |
33 | 32, 15 | lbtr 139 |
. . . . . 6
a ≤ (b ∪ (b⊥ ∩ c)) |
34 | 33, 17 | letr 137 |
. . . . 5
a ≤ ((b ∪ (b⊥ ∩ c⊥ )) ∪ (b⊥ ∩ c)) |
35 | 34 | lel 151 |
. . . 4
(a ∩ (a⊥ ∪ c)) ≤ ((b
∪ (b⊥ ∩ c⊥ )) ∪ (b⊥ ∩ c)) |
36 | 31, 35 | ler2an 173 |
. . 3
(a ∩ (a⊥ ∪ c)) ≤ ((b⊥ ∪ c) ∩ ((b
∪ (b⊥ ∩ c⊥ )) ∪ (b⊥ ∩ c))) |
37 | 29, 36 | lel2or 170 |
. 2
(((a⊥ ∩
c) ∪ (a⊥ ∩ c⊥ )) ∪ (a ∩ (a⊥ ∪ c))) ≤ ((b⊥ ∪ c) ∩ ((b
∪ (b⊥ ∩ c⊥ )) ∪ (b⊥ ∩ c))) |
38 | | df-i3 46 |
. 2
(a →3 c) = (((a⊥ ∩ c) ∪ (a⊥ ∩ c⊥ )) ∪ (a ∩ (a⊥ ∪ c))) |
39 | | dfi3b 499 |
. 2
(b →3 c) = ((b⊥ ∪ c) ∩ ((b
∪ (b⊥ ∩ c⊥ )) ∪ (b⊥ ∩ c))) |
40 | 37, 38, 39 | le3tr1 140 |
1
(a →3 c) ≤ (b
→3 c) |