Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > negantlem1 | GIF version |
Description: Lemma for negated antecedent identity. (Contributed by NM, 6-Aug-2001.) |
Ref | Expression |
---|---|
negant.1 | (a →1 c) = (b →1 c) |
Ref | Expression |
---|---|
negantlem1 | a C (b →1 c) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leo 158 | . . . 4 a⊥ ≤ (a⊥ ∪ (a ∩ c)) | |
2 | df-i1 44 | . . . . . 6 (a →1 c) = (a⊥ ∪ (a ∩ c)) | |
3 | 2 | ax-r1 35 | . . . . 5 (a⊥ ∪ (a ∩ c)) = (a →1 c) |
4 | negant.1 | . . . . 5 (a →1 c) = (b →1 c) | |
5 | 3, 4 | ax-r2 36 | . . . 4 (a⊥ ∪ (a ∩ c)) = (b →1 c) |
6 | 1, 5 | lbtr 139 | . . 3 a⊥ ≤ (b →1 c) |
7 | 6 | lecom 180 | . 2 a⊥ C (b →1 c) |
8 | 7 | comcom6 459 | 1 a C (b →1 c) |
Colors of variables: term |
Syntax hints: = wb 1 C wc 3 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: negantlem2 849 |
Copyright terms: Public domain | W3C validator |