Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > comcom6 | GIF version |
Description: Commutation equivalence. Kalmbach 83 p. 23. (Contributed by NM, 26-Nov-1997.) |
Ref | Expression |
---|---|
comcom6.1 | a⊥ C b |
Ref | Expression |
---|---|
comcom6 | a C b |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comcom6.1 | . . 3 a⊥ C b | |
2 | 1 | comcom2 183 | . 2 a⊥ C b⊥ |
3 | 2 | comcom5 458 | 1 a C b |
Colors of variables: term |
Syntax hints: C wc 3 ⊥ wn 4 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: combi 485 ud3lem1a 566 ud3lem1c 568 ud5lem3a 591 ud5lem3b 592 ud5lem3 594 u3lemaa 602 u4lemaa 603 u5lemaa 604 u3lemab 612 u4lemab 613 u5lemab 614 u2lemc1 681 u5lemc1 684 u5lemc1b 685 u1lemc6 706 u4lemle2 718 u5lemle2 719 u4lem5 764 u24lem 770 u3lem7 774 i1abs 801 3vth7 810 3vth9 812 3vcom 813 2oalem1 825 oale 829 bi4 840 negantlem1 848 elimconslem 867 comanblem2 871 mhlem1 877 marsdenlem2 881 oas 925 lem4.6.2e1 1082 lem4.6.6i1j3 1094 |
Copyright terms: Public domain | W3C validator |