Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u1lemab | GIF version |
Description: Lemma for Sasaki implication study. Equation 4.10 of [MegPav2000] p. 23. This is the second part of the equation. (Contributed by NM, 14-Dec-1997.) |
Ref | Expression |
---|---|
u1lemab | ((a →1 b) ∩ b) = ((a ∩ b) ∪ (a⊥ ∩ b)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-i1 44 | . . 3 (a →1 b) = (a⊥ ∪ (a ∩ b)) | |
2 | 1 | ran 78 | . 2 ((a →1 b) ∩ b) = ((a⊥ ∪ (a ∩ b)) ∩ b) |
3 | ax-a2 31 | . . . . 5 (a⊥ ∪ (a ∩ b)) = ((a ∩ b) ∪ a⊥ ) | |
4 | 3 | ran 78 | . . . 4 ((a⊥ ∪ (a ∩ b)) ∩ b) = (((a ∩ b) ∪ a⊥ ) ∩ b) |
5 | coman2 186 | . . . . 5 (a ∩ b) C b | |
6 | coman1 185 | . . . . . 6 (a ∩ b) C a | |
7 | 6 | comcom2 183 | . . . . 5 (a ∩ b) C a⊥ |
8 | 5, 7 | fh2r 474 | . . . 4 (((a ∩ b) ∪ a⊥ ) ∩ b) = (((a ∩ b) ∩ b) ∪ (a⊥ ∩ b)) |
9 | 4, 8 | ax-r2 36 | . . 3 ((a⊥ ∪ (a ∩ b)) ∩ b) = (((a ∩ b) ∩ b) ∪ (a⊥ ∩ b)) |
10 | anass 76 | . . . . 5 ((a ∩ b) ∩ b) = (a ∩ (b ∩ b)) | |
11 | anidm 111 | . . . . . 6 (b ∩ b) = b | |
12 | 11 | lan 77 | . . . . 5 (a ∩ (b ∩ b)) = (a ∩ b) |
13 | 10, 12 | ax-r2 36 | . . . 4 ((a ∩ b) ∩ b) = (a ∩ b) |
14 | 13 | ax-r5 38 | . . 3 (((a ∩ b) ∩ b) ∪ (a⊥ ∩ b)) = ((a ∩ b) ∪ (a⊥ ∩ b)) |
15 | 9, 14 | ax-r2 36 | . 2 ((a⊥ ∪ (a ∩ b)) ∩ b) = ((a ∩ b) ∪ (a⊥ ∩ b)) |
16 | 2, 15 | ax-r2 36 | 1 ((a →1 b) ∩ b) = ((a ∩ b) ∪ (a⊥ ∩ b)) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: u1lemnonb 675 i1com 708 u1lem3 749 u1lem11 780 sadm3 838 negantlem2 849 negantlem3 850 negantlem10 861 neg3antlem1 864 oa4to4u 973 oa3-6lem 980 oa3-u1lem 985 oa3-u2lem 986 oa3-1to5 993 lem4.6.2e2 1083 |
Copyright terms: Public domain | W3C validator |