Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > oa3to4 | GIF version |
Description: Orthoarguesian law (Godowski/Greechie 3-variable to 4-variable). The first 2 hypotheses are those for 4-OA. The next 3 are variable substitutions into 3-OA. The last is the 3-OA. The proof uses OM logic only. (Contributed by NM, 19-Dec-1998.) |
Ref | Expression |
---|---|
oa3to4.oa4.1 | a ≤ b⊥ |
oa3to4.oa4.2 | c ≤ d⊥ |
oa3to4.3 | g = ((b⊥ ∩ a⊥ ) ∪ (d⊥ ∩ c⊥ )) |
oa3to4.4 | e = b⊥ |
oa3to4.5 | f = d⊥ |
oa3to4.oa3 | (e ∩ ((e →1 g) ∪ ((f →1 g) ∩ ((e ∩ f) ∪ ((e →1 g) ∩ (f →1 g)))))) ≤ ((e ∩ g) ∪ (f ∩ g)) |
Ref | Expression |
---|---|
oa3to4 | ((a ∪ b) ∩ (c ∪ d)) ≤ (b ∪ (a ∩ (c ∪ ((a ∪ c) ∩ (b ∪ d))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oa3to4.oa4.1 | . . . 4 a ≤ b⊥ | |
2 | 1 | lecon3 157 | . . 3 b ≤ a⊥ |
3 | oa3to4.oa4.2 | . . . 4 c ≤ d⊥ | |
4 | 3 | lecon3 157 | . . 3 d ≤ c⊥ |
5 | oa3to4.3 | . . 3 g = ((b⊥ ∩ a⊥ ) ∪ (d⊥ ∩ c⊥ )) | |
6 | oa3to4.4 | . . 3 e = b⊥ | |
7 | oa3to4.5 | . . 3 f = d⊥ | |
8 | oa3to4.oa3 | . . 3 (e ∩ ((e →1 g) ∪ ((f →1 g) ∩ ((e ∩ f) ∪ ((e →1 g) ∩ (f →1 g)))))) ≤ ((e ∩ g) ∪ (f ∩ g)) | |
9 | 2, 4, 5, 6, 7, 8 | oa3to4lem6 950 | . 2 ((b ∪ a) ∩ (d ∪ c)) ≤ (b ∪ (a ∩ (c ∪ ((b ∪ d) ∩ (a ∪ c))))) |
10 | 9 | oa3to4lem5 949 | 1 ((a ∪ b) ∩ (c ∪ d)) ≤ (b ∪ (a ∩ (c ∪ ((a ∪ c) ∩ (b ∪ d))))) |
Colors of variables: term |
Syntax hints: = wb 1 ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |