Proof of Theorem oa6todual
Step | Hyp | Ref
| Expression |
1 | | oa6todual.1 |
. . 3
(((a⊥ ∪
b⊥ ) ∩ (c⊥ ∪ d⊥ )) ∩ (e⊥ ∪ f⊥ )) ≤ (b⊥ ∪ (a⊥ ∩ (c⊥ ∪ (((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∪ ((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ ))))))) |
2 | 1 | lecon 154 |
. 2
(b⊥ ∪ (a⊥ ∩ (c⊥ ∪ (((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∪ ((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )))))))⊥ ≤
(((a⊥ ∪ b⊥ ) ∩ (c⊥ ∪ d⊥ )) ∩ (e⊥ ∪ f⊥
))⊥ |
3 | | ax-a1 30 |
. . . 4
b = b⊥
⊥ |
4 | | ax-a1 30 |
. . . . . 6
a = a⊥
⊥ |
5 | | ax-a1 30 |
. . . . . . . 8
c = c⊥
⊥ |
6 | | df-a 40 |
. . . . . . . . . . . 12
(a ∩ c) = (a⊥ ∪ c⊥
)⊥ |
7 | | df-a 40 |
. . . . . . . . . . . 12
(b ∩ d) = (b⊥ ∪ d⊥
)⊥ |
8 | 6, 7 | 2or 72 |
. . . . . . . . . . 11
((a ∩ c) ∪ (b
∩ d)) = ((a⊥ ∪ c⊥ )⊥ ∪
(b⊥ ∪ d⊥ )⊥
) |
9 | | oran3 93 |
. . . . . . . . . . 11
((a⊥ ∪ c⊥ )⊥ ∪
(b⊥ ∪ d⊥ )⊥ ) =
((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥
))⊥ |
10 | 8, 9 | ax-r2 36 |
. . . . . . . . . 10
((a ∩ c) ∪ (b
∩ d)) = ((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥
))⊥ |
11 | | df-a 40 |
. . . . . . . . . . . . . 14
(a ∩ e) = (a⊥ ∪ e⊥
)⊥ |
12 | | df-a 40 |
. . . . . . . . . . . . . 14
(b ∩ f) = (b⊥ ∪ f⊥
)⊥ |
13 | 11, 12 | 2or 72 |
. . . . . . . . . . . . 13
((a ∩ e) ∪ (b
∩ f)) = ((a⊥ ∪ e⊥ )⊥ ∪
(b⊥ ∪ f⊥ )⊥
) |
14 | | oran3 93 |
. . . . . . . . . . . . 13
((a⊥ ∪ e⊥ )⊥ ∪
(b⊥ ∪ f⊥ )⊥ ) =
((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥
))⊥ |
15 | 13, 14 | ax-r2 36 |
. . . . . . . . . . . 12
((a ∩ e) ∪ (b
∩ f)) = ((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥
))⊥ |
16 | | df-a 40 |
. . . . . . . . . . . . . 14
(c ∩ e) = (c⊥ ∪ e⊥
)⊥ |
17 | | df-a 40 |
. . . . . . . . . . . . . 14
(d ∩ f) = (d⊥ ∪ f⊥
)⊥ |
18 | 16, 17 | 2or 72 |
. . . . . . . . . . . . 13
((c ∩ e) ∪ (d
∩ f)) = ((c⊥ ∪ e⊥ )⊥ ∪
(d⊥ ∪ f⊥ )⊥
) |
19 | | oran3 93 |
. . . . . . . . . . . . 13
((c⊥ ∪ e⊥ )⊥ ∪
(d⊥ ∪ f⊥ )⊥ ) =
((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥
))⊥ |
20 | 18, 19 | ax-r2 36 |
. . . . . . . . . . . 12
((c ∩ e) ∪ (d
∩ f)) = ((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥
))⊥ |
21 | 15, 20 | 2an 79 |
. . . . . . . . . . 11
(((a ∩ e) ∪ (b
∩ f)) ∩ ((c ∩ e) ∪
(d ∩ f))) = (((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ ))⊥ ∩
((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ ))⊥
) |
22 | | anor3 90 |
. . . . . . . . . . 11
(((a⊥ ∪
e⊥ ) ∩ (b⊥ ∪ f⊥ ))⊥ ∩
((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ ))⊥ ) =
(((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∪ ((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥
)))⊥ |
23 | 21, 22 | ax-r2 36 |
. . . . . . . . . 10
(((a ∩ e) ∪ (b
∩ f)) ∩ ((c ∩ e) ∪
(d ∩ f))) = (((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∪ ((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥
)))⊥ |
24 | 10, 23 | 2or 72 |
. . . . . . . . 9
(((a ∩ c) ∪ (b
∩ d)) ∪ (((a ∩ e) ∪
(b ∩ f)) ∩ ((c
∩ e) ∪ (d ∩ f)))) =
(((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ ))⊥ ∪
(((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∪ ((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )))⊥
) |
25 | | oran3 93 |
. . . . . . . . 9
(((a⊥ ∪
c⊥ ) ∩ (b⊥ ∪ d⊥ ))⊥ ∪
(((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∪ ((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )))⊥ ) =
(((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∪ ((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥
))))⊥ |
26 | 24, 25 | ax-r2 36 |
. . . . . . . 8
(((a ∩ c) ∪ (b
∩ d)) ∪ (((a ∩ e) ∪
(b ∩ f)) ∩ ((c
∩ e) ∪ (d ∩ f)))) =
(((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∪ ((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥
))))⊥ |
27 | 5, 26 | 2an 79 |
. . . . . . 7
(c ∩ (((a ∩ c) ∪
(b ∩ d)) ∪ (((a
∩ e) ∪ (b ∩ f))
∩ ((c ∩ e) ∪ (d
∩ f))))) = (c⊥ ⊥ ∩
(((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∪ ((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ ))))⊥
) |
28 | | anor3 90 |
. . . . . . 7
(c⊥
⊥ ∩ (((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∪ ((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ ))))⊥ ) =
(c⊥ ∪ (((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∪ ((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥
)))))⊥ |
29 | 27, 28 | ax-r2 36 |
. . . . . 6
(c ∩ (((a ∩ c) ∪
(b ∩ d)) ∪ (((a
∩ e) ∪ (b ∩ f))
∩ ((c ∩ e) ∪ (d
∩ f))))) = (c⊥ ∪ (((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∪ ((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥
)))))⊥ |
30 | 4, 29 | 2or 72 |
. . . . 5
(a ∪ (c ∩ (((a
∩ c) ∪ (b ∩ d))
∪ (((a ∩ e) ∪ (b
∩ f)) ∩ ((c ∩ e) ∪
(d ∩ f)))))) = (a⊥ ⊥ ∪
(c⊥ ∪ (((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∪ ((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )))))⊥
) |
31 | | oran3 93 |
. . . . 5
(a⊥
⊥ ∪ (c⊥ ∪ (((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∪ ((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )))))⊥ ) =
(a⊥ ∩ (c⊥ ∪ (((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∪ ((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥
))))))⊥ |
32 | 30, 31 | ax-r2 36 |
. . . 4
(a ∪ (c ∩ (((a
∩ c) ∪ (b ∩ d))
∪ (((a ∩ e) ∪ (b
∩ f)) ∩ ((c ∩ e) ∪
(d ∩ f)))))) = (a⊥ ∩ (c⊥ ∪ (((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∪ ((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥
))))))⊥ |
33 | 3, 32 | 2an 79 |
. . 3
(b ∩ (a ∪ (c ∩
(((a ∩ c) ∪ (b
∩ d)) ∪ (((a ∩ e) ∪
(b ∩ f)) ∩ ((c
∩ e) ∪ (d ∩ f)))))))
= (b⊥ ⊥
∩ (a⊥ ∩ (c⊥ ∪ (((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∪ ((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ ))))))⊥
) |
34 | | anor3 90 |
. . 3
(b⊥
⊥ ∩ (a⊥ ∩ (c⊥ ∪ (((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∪ ((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ ))))))⊥ ) =
(b⊥ ∪ (a⊥ ∩ (c⊥ ∪ (((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∪ ((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥
)))))))⊥ |
35 | 33, 34 | ax-r2 36 |
. 2
(b ∩ (a ∪ (c ∩
(((a ∩ c) ∪ (b
∩ d)) ∪ (((a ∩ e) ∪
(b ∩ f)) ∩ ((c
∩ e) ∪ (d ∩ f)))))))
= (b⊥ ∪ (a⊥ ∩ (c⊥ ∪ (((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∪ ((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥
)))))))⊥ |
36 | | df-a 40 |
. . . . . 6
(a ∩ b) = (a⊥ ∪ b⊥
)⊥ |
37 | | df-a 40 |
. . . . . 6
(c ∩ d) = (c⊥ ∪ d⊥
)⊥ |
38 | 36, 37 | 2or 72 |
. . . . 5
((a ∩ b) ∪ (c
∩ d)) = ((a⊥ ∪ b⊥ )⊥ ∪
(c⊥ ∪ d⊥ )⊥
) |
39 | | oran3 93 |
. . . . 5
((a⊥ ∪ b⊥ )⊥ ∪
(c⊥ ∪ d⊥ )⊥ ) =
((a⊥ ∪ b⊥ ) ∩ (c⊥ ∪ d⊥
))⊥ |
40 | 38, 39 | ax-r2 36 |
. . . 4
((a ∩ b) ∪ (c
∩ d)) = ((a⊥ ∪ b⊥ ) ∩ (c⊥ ∪ d⊥
))⊥ |
41 | | df-a 40 |
. . . 4
(e ∩ f) = (e⊥ ∪ f⊥
)⊥ |
42 | 40, 41 | 2or 72 |
. . 3
(((a ∩ b) ∪ (c
∩ d)) ∪ (e ∩ f)) =
(((a⊥ ∪ b⊥ ) ∩ (c⊥ ∪ d⊥ ))⊥ ∪
(e⊥ ∪ f⊥ )⊥
) |
43 | | oran3 93 |
. . 3
(((a⊥ ∪
b⊥ ) ∩ (c⊥ ∪ d⊥ ))⊥ ∪
(e⊥ ∪ f⊥ )⊥ ) =
(((a⊥ ∪ b⊥ ) ∩ (c⊥ ∪ d⊥ )) ∩ (e⊥ ∪ f⊥
))⊥ |
44 | 42, 43 | ax-r2 36 |
. 2
(((a ∩ b) ∪ (c
∩ d)) ∪ (e ∩ f)) =
(((a⊥ ∪ b⊥ ) ∩ (c⊥ ∪ d⊥ )) ∩ (e⊥ ∪ f⊥
))⊥ |
45 | 2, 35, 44 | le3tr1 140 |
1
(b ∩ (a ∪ (c ∩
(((a ∩ c) ∪ (b
∩ d)) ∪ (((a ∩ e) ∪
(b ∩ f)) ∩ ((c
∩ e) ∪ (d ∩ f)))))))
≤ (((a ∩ b) ∪ (c
∩ d)) ∪ (e ∩ f)) |