Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > oa3to4lem3 | GIF version |
Description: Lemma for orthoarguesian law (Godowski/Greechie 3-variable to 4-variable proof). (Contributed by NM, 19-Dec-1998.) |
Ref | Expression |
---|---|
oa3to4lem.1 | a⊥ ≤ b |
oa3to4lem.2 | c⊥ ≤ d |
oa3to4lem.3 | g = ((a ∩ b) ∪ (c ∩ d)) |
Ref | Expression |
---|---|
oa3to4lem3 | (a ∩ (b ∪ (d ∩ ((a ∩ c) ∪ (b ∩ d))))) ≤ (a ∩ ((a →1 g) ∪ ((c →1 g) ∩ ((a ∩ c) ∪ ((a →1 g) ∩ (c →1 g)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oa3to4lem.1 | . . . 4 a⊥ ≤ b | |
2 | oa3to4lem.2 | . . . 4 c⊥ ≤ d | |
3 | oa3to4lem.3 | . . . 4 g = ((a ∩ b) ∪ (c ∩ d)) | |
4 | 1, 2, 3 | oa3to4lem1 945 | . . 3 b ≤ (a →1 g) |
5 | 1, 2, 3 | oa3to4lem2 946 | . . . 4 d ≤ (c →1 g) |
6 | 4, 5 | le2an 169 | . . . . 5 (b ∩ d) ≤ ((a →1 g) ∩ (c →1 g)) |
7 | 6 | lelor 166 | . . . 4 ((a ∩ c) ∪ (b ∩ d)) ≤ ((a ∩ c) ∪ ((a →1 g) ∩ (c →1 g))) |
8 | 5, 7 | le2an 169 | . . 3 (d ∩ ((a ∩ c) ∪ (b ∩ d))) ≤ ((c →1 g) ∩ ((a ∩ c) ∪ ((a →1 g) ∩ (c →1 g)))) |
9 | 4, 8 | le2or 168 | . 2 (b ∪ (d ∩ ((a ∩ c) ∪ (b ∩ d)))) ≤ ((a →1 g) ∪ ((c →1 g) ∩ ((a ∩ c) ∪ ((a →1 g) ∩ (c →1 g))))) |
10 | 9 | lelan 167 | 1 (a ∩ (b ∪ (d ∩ ((a ∩ c) ∪ (b ∩ d))))) ≤ (a ∩ ((a →1 g) ∪ ((c →1 g) ∩ ((a ∩ c) ∪ ((a →1 g) ∩ (c →1 g)))))) |
Colors of variables: term |
Syntax hints: = wb 1 ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: oa3to4lem4 948 |
Copyright terms: Public domain | W3C validator |