Proof of Theorem oa3to4lem2
Step | Hyp | Ref
| Expression |
1 | | leor 159 |
. . . 4
d ≤ (c⊥ ∪ d) |
2 | | comid 187 |
. . . . . . . . 9
c C c |
3 | 2 | comcom3 454 |
. . . . . . . 8
c⊥ C
c |
4 | | oa3to4lem.2 |
. . . . . . . . 9
c⊥ ≤ d |
5 | 4 | lecom 180 |
. . . . . . . 8
c⊥ C
d |
6 | 3, 5 | fh3 471 |
. . . . . . 7
(c⊥ ∪ (c ∩ d)) =
((c⊥ ∪ c) ∩ (c⊥ ∪ d)) |
7 | | ancom 74 |
. . . . . . . 8
(1 ∩ (c⊥ ∪
d)) = ((c⊥ ∪ d) ∩ 1) |
8 | | df-t 41 |
. . . . . . . . . 10
1 = (c ∪ c⊥ ) |
9 | | ax-a2 31 |
. . . . . . . . . 10
(c ∪ c⊥ ) = (c⊥ ∪ c) |
10 | 8, 9 | ax-r2 36 |
. . . . . . . . 9
1 = (c⊥ ∪
c) |
11 | 10 | ran 78 |
. . . . . . . 8
(1 ∩ (c⊥ ∪
d)) = ((c⊥ ∪ c) ∩ (c⊥ ∪ d)) |
12 | | an1 106 |
. . . . . . . 8
((c⊥ ∪ d) ∩ 1) = (c⊥ ∪ d) |
13 | 7, 11, 12 | 3tr2 64 |
. . . . . . 7
((c⊥ ∪ c) ∩ (c⊥ ∪ d)) = (c⊥ ∪ d) |
14 | 6, 13 | ax-r2 36 |
. . . . . 6
(c⊥ ∪ (c ∩ d)) =
(c⊥ ∪ d) |
15 | 14 | ax-r1 35 |
. . . . 5
(c⊥ ∪ d) = (c⊥ ∪ (c ∩ d)) |
16 | | anidm 111 |
. . . . . . . . 9
(c ∩ c) = c |
17 | 16 | ran 78 |
. . . . . . . 8
((c ∩ c) ∩ d) =
(c ∩ d) |
18 | 17 | ax-r1 35 |
. . . . . . 7
(c ∩ d) = ((c ∩
c) ∩ d) |
19 | | anass 76 |
. . . . . . 7
((c ∩ c) ∩ d) =
(c ∩ (c ∩ d)) |
20 | 18, 19 | ax-r2 36 |
. . . . . 6
(c ∩ d) = (c ∩
(c ∩ d)) |
21 | 20 | lor 70 |
. . . . 5
(c⊥ ∪ (c ∩ d)) =
(c⊥ ∪ (c ∩ (c ∩
d))) |
22 | 15, 21 | ax-r2 36 |
. . . 4
(c⊥ ∪ d) = (c⊥ ∪ (c ∩ (c ∩
d))) |
23 | 1, 22 | lbtr 139 |
. . 3
d ≤ (c⊥ ∪ (c ∩ (c ∩
d))) |
24 | | leor 159 |
. . . . 5
(c ∩ d) ≤ ((a
∩ b) ∪ (c ∩ d)) |
25 | 24 | lelan 167 |
. . . 4
(c ∩ (c ∩ d)) ≤
(c ∩ ((a ∩ b) ∪
(c ∩ d))) |
26 | 25 | lelor 166 |
. . 3
(c⊥ ∪ (c ∩ (c ∩
d))) ≤ (c⊥ ∪ (c ∩ ((a
∩ b) ∪ (c ∩ d)))) |
27 | 23, 26 | letr 137 |
. 2
d ≤ (c⊥ ∪ (c ∩ ((a
∩ b) ∪ (c ∩ d)))) |
28 | | oa3to4lem.3 |
. . . . 5
g = ((a ∩ b) ∪
(c ∩ d)) |
29 | 28 | ud1lem0a 255 |
. . . 4
(c →1 g) = (c
→1 ((a ∩ b) ∪ (c
∩ d))) |
30 | | df-i1 44 |
. . . 4
(c →1 ((a ∩ b) ∪
(c ∩ d))) = (c⊥ ∪ (c ∩ ((a
∩ b) ∪ (c ∩ d)))) |
31 | 29, 30 | ax-r2 36 |
. . 3
(c →1 g) = (c⊥ ∪ (c ∩ ((a
∩ b) ∪ (c ∩ d)))) |
32 | 31 | ax-r1 35 |
. 2
(c⊥ ∪ (c ∩ ((a
∩ b) ∪ (c ∩ d)))) =
(c →1 g) |
33 | 27, 32 | lbtr 139 |
1
d ≤ (c →1 g) |