Proof of Theorem oa23
Step | Hyp | Ref
| Expression |
1 | | ax-a2 31 |
. . . . . . 7
(b ∪ c) = (c ∪
b) |
2 | 1 | ax-r4 37 |
. . . . . 6
(b ∪ c)⊥ = (c ∪ b)⊥ |
3 | | ancom 74 |
. . . . . 6
((a →2 b) ∩ (a
→2 c)) = ((a →2 c) ∩ (a
→2 b)) |
4 | 2, 3 | 2or 72 |
. . . . 5
((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c))) = ((c ∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b))) |
5 | 4 | lan 77 |
. . . 4
((a →2 b) ∩ ((b
∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))) = ((a →2 b) ∩ ((c
∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b)))) |
6 | 5 | ax-r5 38 |
. . 3
(((a →2 b) ∩ ((b
∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))) ∪ (a →2 c)) = (((a
→2 b) ∩ ((c ∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b)))) ∪ (a →2 c)) |
7 | | ax-a2 31 |
. . 3
(((a →2 b) ∩ ((c
∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b)))) ∪ (a →2 c)) = ((a
→2 c) ∪ ((a →2 b) ∩ ((c
∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b))))) |
8 | | ax-a3 32 |
. . . . . . . . . 10
(((a →2 c) ∪ (a
→2 c)) ∪ ((a →2 b) ∩ ((c
∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b))))) = ((a →2 c) ∪ ((a
→2 c) ∪ ((a →2 b) ∩ ((c
∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b)))))) |
9 | 8 | ax-r1 35 |
. . . . . . . . 9
((a →2 c) ∪ ((a
→2 c) ∪ ((a →2 b) ∩ ((c
∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b)))))) = (((a →2 c) ∪ (a
→2 c)) ∪ ((a →2 b) ∩ ((c
∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b))))) |
10 | | oridm 110 |
. . . . . . . . . 10
((a →2 c) ∪ (a
→2 c)) = (a →2 c) |
11 | 10 | ax-r5 38 |
. . . . . . . . 9
(((a →2 c) ∪ (a
→2 c)) ∪ ((a →2 b) ∩ ((c
∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b))))) = ((a →2 c) ∪ ((a
→2 b) ∩ ((c ∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b))))) |
12 | 9, 11 | ax-r2 36 |
. . . . . . . 8
((a →2 c) ∪ ((a
→2 c) ∪ ((a →2 b) ∩ ((c
∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b)))))) = ((a →2 c) ∪ ((a
→2 b) ∩ ((c ∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b))))) |
13 | | u2lemonb 636 |
. . . . . . . 8
((a →2 c) ∪ c⊥ ) = 1 |
14 | 12, 13 | 2an 79 |
. . . . . . 7
(((a →2 c) ∪ ((a
→2 c) ∪ ((a →2 b) ∩ ((c
∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b)))))) ∩ ((a →2 c) ∪ c⊥ )) = (((a →2 c) ∪ ((a
→2 b) ∩ ((c ∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b))))) ∩
1) |
15 | 14 | ax-r1 35 |
. . . . . 6
(((a →2 c) ∪ ((a
→2 b) ∩ ((c ∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b))))) ∩ 1) =
(((a →2 c) ∪ ((a
→2 c) ∪ ((a →2 b) ∩ ((c
∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b)))))) ∩ ((a →2 c) ∪ c⊥ )) |
16 | | an1 106 |
. . . . . . 7
(((a →2 c) ∪ ((a
→2 b) ∩ ((c ∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b))))) ∩ 1) =
((a →2 c) ∪ ((a
→2 b) ∩ ((c ∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b))))) |
17 | 16 | ax-r1 35 |
. . . . . 6
((a →2 c) ∪ ((a
→2 b) ∩ ((c ∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b))))) = (((a →2 c) ∪ ((a
→2 b) ∩ ((c ∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b))))) ∩
1) |
18 | | comorr 184 |
. . . . . . 7
(a →2 c) C ((a
→2 c) ∪ ((a →2 b) ∩ ((c
∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b))))) |
19 | | u2lemc1 681 |
. . . . . . . . 9
c C (a →2 c) |
20 | 19 | comcom 453 |
. . . . . . . 8
(a →2 c) C c |
21 | 20 | comcom2 183 |
. . . . . . 7
(a →2 c) C c⊥ |
22 | 18, 21 | fh3 471 |
. . . . . 6
((a →2 c) ∪ (((a
→2 c) ∪ ((a →2 b) ∩ ((c
∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b))))) ∩ c⊥ )) = (((a →2 c) ∪ ((a
→2 c) ∪ ((a →2 b) ∩ ((c
∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b)))))) ∩ ((a →2 c) ∪ c⊥ )) |
23 | 15, 17, 22 | 3tr1 63 |
. . . . 5
((a →2 c) ∪ ((a
→2 b) ∩ ((c ∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b))))) = ((a →2 c) ∪ (((a
→2 c) ∪ ((a →2 b) ∩ ((c
∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b))))) ∩ c⊥ )) |
24 | | oa23.1 |
. . . . . . . . 9
(c⊥ ∩
((a →2 c) ∪ ((a
→2 b) ∩ ((c ∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b)))))) ≤ a⊥ |
25 | | lea 160 |
. . . . . . . . 9
(c⊥ ∩
((a →2 c) ∪ ((a
→2 b) ∩ ((c ∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b)))))) ≤ c⊥ |
26 | 24, 25 | ler2an 173 |
. . . . . . . 8
(c⊥ ∩
((a →2 c) ∪ ((a
→2 b) ∩ ((c ∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b)))))) ≤ (a⊥ ∩ c⊥ ) |
27 | | ancom 74 |
. . . . . . . 8
(((a →2 c) ∪ ((a
→2 b) ∩ ((c ∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b))))) ∩ c⊥ ) = (c⊥ ∩ ((a →2 c) ∪ ((a
→2 b) ∩ ((c ∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b)))))) |
28 | | u2lemanb 616 |
. . . . . . . 8
((a →2 c) ∩ c⊥ ) = (a⊥ ∩ c⊥ ) |
29 | 26, 27, 28 | le3tr1 140 |
. . . . . . 7
(((a →2 c) ∪ ((a
→2 b) ∩ ((c ∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b))))) ∩ c⊥ ) ≤ ((a →2 c) ∩ c⊥ ) |
30 | 29 | lelor 166 |
. . . . . 6
((a →2 c) ∪ (((a
→2 c) ∪ ((a →2 b) ∩ ((c
∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b))))) ∩ c⊥ )) ≤ ((a →2 c) ∪ ((a
→2 c) ∩ c⊥ )) |
31 | | orabs 120 |
. . . . . 6
((a →2 c) ∪ ((a
→2 c) ∩ c⊥ )) = (a →2 c) |
32 | 30, 31 | lbtr 139 |
. . . . 5
((a →2 c) ∪ (((a
→2 c) ∪ ((a →2 b) ∩ ((c
∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b))))) ∩ c⊥ )) ≤ (a →2 c) |
33 | 23, 32 | bltr 138 |
. . . 4
((a →2 c) ∪ ((a
→2 b) ∩ ((c ∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b))))) ≤ (a →2 c) |
34 | | leo 158 |
. . . 4
(a →2 c) ≤ ((a
→2 c) ∪ ((a →2 b) ∩ ((c
∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b))))) |
35 | 33, 34 | lebi 145 |
. . 3
((a →2 c) ∪ ((a
→2 b) ∩ ((c ∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b))))) = (a →2 c) |
36 | 6, 7, 35 | 3tr 65 |
. 2
(((a →2 b) ∩ ((b
∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))) ∪ (a →2 c)) = (a
→2 c) |
37 | 36 | df-le1 130 |
1
((a →2 b) ∩ ((b
∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))) ≤ (a →2 c) |