Proof of Theorem oa4to6lem4
Step | Hyp | Ref
| Expression |
1 | | oa4to6lem.1 |
. . 3
a⊥ ≤ b |
2 | | oa4to6lem.2 |
. . 3
c⊥ ≤ d |
3 | | oa4to6lem.3 |
. . 3
e⊥ ≤ f |
4 | | oa4to6lem.4 |
. . 3
g = (((a ∩ b) ∪
(c ∩ d)) ∪ (e
∩ f)) |
5 | 1, 2, 3, 4 | oa4to6lem1 960 |
. 2
b ≤ (a →1 g) |
6 | 1, 2, 3, 4 | oa4to6lem2 961 |
. . . . . . 7
d ≤ (c →1 g) |
7 | 5, 6 | le2an 169 |
. . . . . 6
(b ∩ d) ≤ ((a
→1 g) ∩ (c →1 g)) |
8 | 7 | lelor 166 |
. . . . 5
((a ∩ c) ∪ (b
∩ d)) ≤ ((a ∩ c) ∪
((a →1 g) ∩ (c
→1 g))) |
9 | 1, 2, 3, 4 | oa4to6lem3 962 |
. . . . . . . 8
f ≤ (e →1 g) |
10 | 5, 9 | le2an 169 |
. . . . . . 7
(b ∩ f) ≤ ((a
→1 g) ∩ (e →1 g)) |
11 | 10 | lelor 166 |
. . . . . 6
((a ∩ e) ∪ (b
∩ f)) ≤ ((a ∩ e) ∪
((a →1 g) ∩ (e
→1 g))) |
12 | 6, 9 | le2an 169 |
. . . . . . 7
(d ∩ f) ≤ ((c
→1 g) ∩ (e →1 g)) |
13 | 12 | lelor 166 |
. . . . . 6
((c ∩ e) ∪ (d
∩ f)) ≤ ((c ∩ e) ∪
((c →1 g) ∩ (e
→1 g))) |
14 | 11, 13 | le2an 169 |
. . . . 5
(((a ∩ e) ∪ (b
∩ f)) ∩ ((c ∩ e) ∪
(d ∩ f))) ≤ (((a
∩ e) ∪ ((a →1 g) ∩ (e
→1 g))) ∩ ((c ∩ e) ∪
((c →1 g) ∩ (e
→1 g)))) |
15 | 8, 14 | le2or 168 |
. . . 4
(((a ∩ c) ∪ (b
∩ d)) ∪ (((a ∩ e) ∪
(b ∩ f)) ∩ ((c
∩ e) ∪ (d ∩ f))))
≤ (((a ∩ c) ∪ ((a
→1 g) ∩ (c →1 g))) ∪ (((a
∩ e) ∪ ((a →1 g) ∩ (e
→1 g))) ∩ ((c ∩ e) ∪
((c →1 g) ∩ (e
→1 g))))) |
16 | 15 | lelan 167 |
. . 3
(c ∩ (((a ∩ c) ∪
(b ∩ d)) ∪ (((a
∩ e) ∪ (b ∩ f))
∩ ((c ∩ e) ∪ (d
∩ f))))) ≤ (c ∩ (((a
∩ c) ∪ ((a →1 g) ∩ (c
→1 g))) ∪ (((a ∩ e) ∪
((a →1 g) ∩ (e
→1 g))) ∩ ((c ∩ e) ∪
((c →1 g) ∩ (e
→1 g)))))) |
17 | 16 | lelor 166 |
. 2
(a ∪ (c ∩ (((a
∩ c) ∪ (b ∩ d))
∪ (((a ∩ e) ∪ (b
∩ f)) ∩ ((c ∩ e) ∪
(d ∩ f)))))) ≤ (a
∪ (c ∩ (((a ∩ c) ∪
((a →1 g) ∩ (c
→1 g))) ∪ (((a ∩ e) ∪
((a →1 g) ∩ (e
→1 g))) ∩ ((c ∩ e) ∪
((c →1 g) ∩ (e
→1 g))))))) |
18 | 5, 17 | le2an 169 |
1
(b ∩ (a ∪ (c ∩
(((a ∩ c) ∪ (b
∩ d)) ∪ (((a ∩ e) ∪
(b ∩ f)) ∩ ((c
∩ e) ∪ (d ∩ f)))))))
≤ ((a →1 g) ∩ (a
∪ (c ∩ (((a ∩ c) ∪
((a →1 g) ∩ (c
→1 g))) ∪ (((a ∩ e) ∪
((a →1 g) ∩ (e
→1 g))) ∩ ((c ∩ e) ∪
((c →1 g) ∩ (e
→1 g)))))))) |