Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > oa4to6dual | GIF version |
Description: Lemma for orthoarguesian law (4-variable to 6-variable proof). (Contributed by NM, 19-Dec-1998.) |
Ref | Expression |
---|---|
oa4to6lem.1 | a⊥ ≤ b |
oa4to6lem.2 | c⊥ ≤ d |
oa4to6lem.3 | e⊥ ≤ f |
oa4to6lem.4 | g = (((a ∩ b) ∪ (c ∩ d)) ∪ (e ∩ f)) |
oa4to6lem.oa4 | ((a →1 g) ∩ (a ∪ (c ∩ (((a ∩ c) ∪ ((a →1 g) ∩ (c →1 g))) ∪ (((a ∩ e) ∪ ((a →1 g) ∩ (e →1 g))) ∩ ((c ∩ e) ∪ ((c →1 g) ∩ (e →1 g)))))))) ≤ g |
Ref | Expression |
---|---|
oa4to6dual | (b ∩ (a ∪ (c ∩ (((a ∩ c) ∪ (b ∩ d)) ∪ (((a ∩ e) ∪ (b ∩ f)) ∩ ((c ∩ e) ∪ (d ∩ f))))))) ≤ g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oa4to6lem.1 | . . 3 a⊥ ≤ b | |
2 | oa4to6lem.2 | . . 3 c⊥ ≤ d | |
3 | oa4to6lem.3 | . . 3 e⊥ ≤ f | |
4 | oa4to6lem.4 | . . 3 g = (((a ∩ b) ∪ (c ∩ d)) ∪ (e ∩ f)) | |
5 | 1, 2, 3, 4 | oa4to6lem4 963 | . 2 (b ∩ (a ∪ (c ∩ (((a ∩ c) ∪ (b ∩ d)) ∪ (((a ∩ e) ∪ (b ∩ f)) ∩ ((c ∩ e) ∪ (d ∩ f))))))) ≤ ((a →1 g) ∩ (a ∪ (c ∩ (((a ∩ c) ∪ ((a →1 g) ∩ (c →1 g))) ∪ (((a ∩ e) ∪ ((a →1 g) ∩ (e →1 g))) ∩ ((c ∩ e) ∪ ((c →1 g) ∩ (e →1 g)))))))) |
6 | oa4to6lem.oa4 | . 2 ((a →1 g) ∩ (a ∪ (c ∩ (((a ∩ c) ∪ ((a →1 g) ∩ (c →1 g))) ∪ (((a ∩ e) ∪ ((a →1 g) ∩ (e →1 g))) ∩ ((c ∩ e) ∪ ((c →1 g) ∩ (e →1 g)))))))) ≤ g | |
7 | 5, 6 | letr 137 | 1 (b ∩ (a ∪ (c ∩ (((a ∩ c) ∪ (b ∩ d)) ∪ (((a ∩ e) ∪ (b ∩ f)) ∩ ((c ∩ e) ∪ (d ∩ f))))))) ≤ g |
Colors of variables: term |
Syntax hints: = wb 1 ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: oa4to6 965 oa3-6to3 987 oa3-2to4 988 oa3-u1 991 oa3-u2 992 |
Copyright terms: Public domain | W3C validator |