| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > oacom2 | GIF version | ||
| Description: Commutation law requiring OA. (Contributed by NM, 19-Nov-1998.) |
| Ref | Expression |
|---|---|
| oacom2.1 | d ≤ ((a →2 b) ∩ ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c)))) |
| Ref | Expression |
|---|---|
| oacom2 | d C ((a →2 b) ∩ (a →2 c)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oacom2.1 | . . . 4 d ≤ ((a →2 b) ∩ ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c)))) | |
| 2 | lear 161 | . . . 4 ((a →2 b) ∩ ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c)))) ≤ ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c))) | |
| 3 | 1, 2 | letr 137 | . . 3 d ≤ ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c))) |
| 4 | 3 | lecom 180 | . 2 d C ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c))) |
| 5 | lea 160 | . . . 4 (d ∩ ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c)))) ≤ d | |
| 6 | lea 160 | . . . . 5 ((a →2 b) ∩ ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c)))) ≤ (a →2 b) | |
| 7 | 1, 6 | letr 137 | . . . 4 d ≤ (a →2 b) |
| 8 | 5, 7 | letr 137 | . . 3 (d ∩ ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c)))) ≤ (a →2 b) |
| 9 | 8 | lecom 180 | . 2 (d ∩ ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c)))) C (a →2 b) |
| 10 | 4, 9 | oacom 1011 | 1 d C ((a →2 b) ∩ (a →2 c)) |
| Colors of variables: term |
| Syntax hints: ≤ wle 2 C wc 3 ∪ wo 6 ∩ wa 7 →0 wi0 11 →2 wi2 13 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 ax-3oa 998 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i0 43 df-i1 44 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |