Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > oagen2b | GIF version |
Description: "Generalized" OA. (Contributed by NM, 21-Nov-1998.) |
Ref | Expression |
---|---|
oagen2b.1 | d ≤ (a →2 b) |
oagen2b.2 | e ≤ ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c))) |
Ref | Expression |
---|---|
oagen2b | (d ∩ e) ≤ (a →2 c) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oagen2b.1 | . . 3 d ≤ (a →2 b) | |
2 | 1 | leran 153 | . 2 (d ∩ e) ≤ ((a →2 b) ∩ e) |
3 | oagen2b.2 | . . 3 e ≤ ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c))) | |
4 | 3 | oagen2 1016 | . 2 ((a →2 b) ∩ e) ≤ (a →2 c) |
5 | 2, 4 | letr 137 | 1 (d ∩ e) ≤ (a →2 c) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ∪ wo 6 ∩ wa 7 →0 wi0 11 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-3oa 998 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i0 43 df-i1 44 df-i2 45 df-le1 130 df-le2 131 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |