QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  oagen2b GIF version

Theorem oagen2b 1017
Description: "Generalized" OA. (Contributed by NM, 21-Nov-1998.)
Hypotheses
Ref Expression
oagen2b.1 d ≤ (a2 b)
oagen2b.2 e ≤ ((bc) →0 ((a2 b) ∩ (a2 c)))
Assertion
Ref Expression
oagen2b (de) ≤ (a2 c)

Proof of Theorem oagen2b
StepHypRef Expression
1 oagen2b.1 . . 3 d ≤ (a2 b)
21leran 153 . 2 (de) ≤ ((a2 b) ∩ e)
3 oagen2b.2 . . 3 e ≤ ((bc) →0 ((a2 b) ∩ (a2 c)))
43oagen2 1016 . 2 ((a2 b) ∩ e) ≤ (a2 c)
52, 4letr 137 1 (de) ≤ (a2 c)
Colors of variables: term
Syntax hints:  wle 2  wo 6  wa 7  0 wi0 11  2 wi2 13
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-3oa 998
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-i0 43  df-i1 44  df-i2 45  df-le1 130  df-le2 131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator