Proof of Theorem mloa
| Step | Hyp | Ref
| Expression |
| 1 | | lea 160 |
. . . 4
((a →2 b) ∩ (b
→2 a)) ≤ (a →2 b) |
| 2 | | ax-a3 32 |
. . . . . 6
(((b ∩ c) ∪ (b⊥ ∩ c⊥ )) ∪ ((a →2 b) ∩ (a
→2 c))) = ((b ∩ c) ∪
((b⊥ ∩ c⊥ ) ∪ ((a →2 b) ∩ (a
→2 c)))) |
| 3 | | or12 80 |
. . . . . . 7
((b ∩ c) ∪ ((b⊥ ∩ c⊥ ) ∪ ((a →2 b) ∩ (a
→2 c)))) = ((b⊥ ∩ c⊥ ) ∪ ((b ∩ c) ∪
((a →2 b) ∩ (a
→2 c)))) |
| 4 | | anor3 90 |
. . . . . . . 8
(b⊥ ∩ c⊥ ) = (b ∪ c)⊥ |
| 5 | 4 | ax-r5 38 |
. . . . . . 7
((b⊥ ∩ c⊥ ) ∪ ((b ∩ c) ∪
((a →2 b) ∩ (a
→2 c)))) = ((b ∪ c)⊥ ∪ ((b ∩ c) ∪
((a →2 b) ∩ (a
→2 c)))) |
| 6 | 3, 5 | ax-r2 36 |
. . . . . 6
((b ∩ c) ∪ ((b⊥ ∩ c⊥ ) ∪ ((a →2 b) ∩ (a
→2 c)))) = ((b ∪ c)⊥ ∪ ((b ∩ c) ∪
((a →2 b) ∩ (a
→2 c)))) |
| 7 | 2, 6 | ax-r2 36 |
. . . . 5
(((b ∩ c) ∪ (b⊥ ∩ c⊥ )) ∪ ((a →2 b) ∩ (a
→2 c))) = ((b ∪ c)⊥ ∪ ((b ∩ c) ∪
((a →2 b) ∩ (a
→2 c)))) |
| 8 | | leo 158 |
. . . . . . . . 9
b ≤ (b ∪ (a⊥ ∩ b⊥ )) |
| 9 | | df-i2 45 |
. . . . . . . . . 10
(a →2 b) = (b ∪
(a⊥ ∩ b⊥ )) |
| 10 | 9 | ax-r1 35 |
. . . . . . . . 9
(b ∪ (a⊥ ∩ b⊥ )) = (a →2 b) |
| 11 | 8, 10 | lbtr 139 |
. . . . . . . 8
b ≤ (a →2 b) |
| 12 | | leo 158 |
. . . . . . . . 9
c ≤ (c ∪ (a⊥ ∩ c⊥ )) |
| 13 | | df-i2 45 |
. . . . . . . . . 10
(a →2 c) = (c ∪
(a⊥ ∩ c⊥ )) |
| 14 | 13 | ax-r1 35 |
. . . . . . . . 9
(c ∪ (a⊥ ∩ c⊥ )) = (a →2 c) |
| 15 | 12, 14 | lbtr 139 |
. . . . . . . 8
c ≤ (a →2 c) |
| 16 | 11, 15 | le2an 169 |
. . . . . . 7
(b ∩ c) ≤ ((a
→2 b) ∩ (a →2 c)) |
| 17 | | id 59 |
. . . . . . . 8
((a →2 b) ∩ (a
→2 c)) = ((a →2 b) ∩ (a
→2 c)) |
| 18 | 17 | bile 142 |
. . . . . . 7
((a →2 b) ∩ (a
→2 c)) ≤ ((a →2 b) ∩ (a
→2 c)) |
| 19 | 16, 18 | lel2or 170 |
. . . . . 6
((b ∩ c) ∪ ((a
→2 b) ∩ (a →2 c))) ≤ ((a
→2 b) ∩ (a →2 c)) |
| 20 | 19 | lelor 166 |
. . . . 5
((b ∪ c)⊥ ∪ ((b ∩ c) ∪
((a →2 b) ∩ (a
→2 c)))) ≤ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c))) |
| 21 | 7, 20 | bltr 138 |
. . . 4
(((b ∩ c) ∪ (b⊥ ∩ c⊥ )) ∪ ((a →2 b) ∩ (a
→2 c))) ≤ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c))) |
| 22 | 1, 21 | le2an 169 |
. . 3
(((a →2 b) ∩ (b
→2 a)) ∩ (((b ∩ c) ∪
(b⊥ ∩ c⊥ )) ∪ ((a →2 b) ∩ (a
→2 c)))) ≤ ((a →2 b) ∩ ((b
∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))) |
| 23 | | oal2 999 |
. . 3
((a →2 b) ∩ ((b
∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))) ≤ (a →2 c) |
| 24 | 22, 23 | letr 137 |
. 2
(((a →2 b) ∩ (b
→2 a)) ∩ (((b ∩ c) ∪
(b⊥ ∩ c⊥ )) ∪ ((a →2 b) ∩ (a
→2 c)))) ≤ (a →2 c) |
| 25 | | u2lembi 721 |
. . 3
((a →2 b) ∩ (b
→2 a)) = (a ≡ b) |
| 26 | | dfb 94 |
. . . . 5
(b ≡ c) = ((b ∩
c) ∪ (b⊥ ∩ c⊥ )) |
| 27 | 26 | ax-r1 35 |
. . . 4
((b ∩ c) ∪ (b⊥ ∩ c⊥ )) = (b ≡ c) |
| 28 | | i2bi 722 |
. . . . 5
(a →2 b) = (b ∪
(a ≡ b)) |
| 29 | | i2bi 722 |
. . . . 5
(a →2 c) = (c ∪
(a ≡ c)) |
| 30 | 28, 29 | 2an 79 |
. . . 4
((a →2 b) ∩ (a
→2 c)) = ((b ∪ (a
≡ b)) ∩ (c ∪ (a
≡ c))) |
| 31 | 27, 30 | 2or 72 |
. . 3
(((b ∩ c) ∪ (b⊥ ∩ c⊥ )) ∪ ((a →2 b) ∩ (a
→2 c))) = ((b ≡ c)
∪ ((b ∪ (a ≡ b))
∩ (c ∪ (a ≡ c)))) |
| 32 | 25, 31 | 2an 79 |
. 2
(((a →2 b) ∩ (b
→2 a)) ∩ (((b ∩ c) ∪
(b⊥ ∩ c⊥ )) ∪ ((a →2 b) ∩ (a
→2 c)))) = ((a ≡ b)
∩ ((b ≡ c) ∪ ((b
∪ (a ≡ b)) ∩ (c
∪ (a ≡ c))))) |
| 33 | 24, 32, 29 | le3tr2 141 |
1
((a ≡ b) ∩ ((b
≡ c) ∪ ((b ∪ (a
≡ b)) ∩ (c ∪ (a
≡ c))))) ≤ (c ∪ (a
≡ c)) |