Proof of Theorem oaidlem2g
Step | Hyp | Ref
| Expression |
1 | | anidm 111 |
. . . . . . . . . 10
(a ∩ a) = a |
2 | 1 | ax-r1 35 |
. . . . . . . . 9
a = (a ∩ a) |
3 | 2 | ran 78 |
. . . . . . . 8
(a ∩ b) = ((a ∩
a) ∩ b) |
4 | | anass 76 |
. . . . . . . 8
((a ∩ a) ∩ b) =
(a ∩ (a ∩ b)) |
5 | 3, 4 | ax-r2 36 |
. . . . . . 7
(a ∩ b) = (a ∩
(a ∩ b)) |
6 | | leor 159 |
. . . . . . . 8
(a ∩ b) ≤ (c ∪
(a ∩ b)) |
7 | 6 | lelan 167 |
. . . . . . 7
(a ∩ (a ∩ b)) ≤
(a ∩ (c ∪ (a ∩
b))) |
8 | 5, 7 | bltr 138 |
. . . . . 6
(a ∩ b) ≤ (a ∩
(c ∪ (a ∩ b))) |
9 | 8 | df-le2 131 |
. . . . 5
((a ∩ b) ∪ (a
∩ (c ∪ (a ∩ b)))) =
(a ∩ (c ∪ (a ∩
b))) |
10 | | ax-a3 32 |
. . . . . 6
(((c ∪ (a ∩ b))⊥ ∪ a⊥ ) ∪ (a ∩ b)) =
((c ∪ (a ∩ b))⊥ ∪ (a⊥ ∪ (a ∩ b))) |
11 | | ax-a2 31 |
. . . . . . . 8
((c ∪ (a ∩ b))⊥ ∪ a⊥ ) = (a⊥ ∪ (c ∪ (a ∩
b))⊥ ) |
12 | | oran3 93 |
. . . . . . . 8
(a⊥ ∪ (c ∪ (a ∩
b))⊥ ) = (a ∩ (c ∪
(a ∩ b)))⊥ |
13 | 11, 12 | ax-r2 36 |
. . . . . . 7
((c ∪ (a ∩ b))⊥ ∪ a⊥ ) = (a ∩ (c ∪
(a ∩ b)))⊥ |
14 | 13 | ax-r5 38 |
. . . . . 6
(((c ∪ (a ∩ b))⊥ ∪ a⊥ ) ∪ (a ∩ b)) =
((a ∩ (c ∪ (a ∩
b)))⊥ ∪ (a ∩ b)) |
15 | | df-i1 44 |
. . . . . . . . 9
(a →1 b) = (a⊥ ∪ (a ∩ b)) |
16 | 15 | lor 70 |
. . . . . . . 8
((c ∪ (a ∩ b))⊥ ∪ (a →1 b)) = ((c ∪
(a ∩ b))⊥ ∪ (a⊥ ∪ (a ∩ b))) |
17 | 16 | ax-r1 35 |
. . . . . . 7
((c ∪ (a ∩ b))⊥ ∪ (a⊥ ∪ (a ∩ b))) =
((c ∪ (a ∩ b))⊥ ∪ (a →1 b)) |
18 | | oaidlem2g.1 |
. . . . . . 7
((c ∪ (a ∩ b))⊥ ∪ (a →1 b)) = 1 |
19 | 17, 18 | ax-r2 36 |
. . . . . 6
((c ∪ (a ∩ b))⊥ ∪ (a⊥ ∪ (a ∩ b))) =
1 |
20 | 10, 14, 19 | 3tr2 64 |
. . . . 5
((a ∩ (c ∪ (a ∩
b)))⊥ ∪ (a ∩ b)) =
1 |
21 | 9, 20 | lem3.1 443 |
. . . 4
(a ∩ b) = (a ∩
(c ∪ (a ∩ b))) |
22 | 21 | ax-r1 35 |
. . 3
(a ∩ (c ∪ (a ∩
b))) = (a ∩ b) |
23 | 22 | bile 142 |
. 2
(a ∩ (c ∪ (a ∩
b))) ≤ (a ∩ b) |
24 | | lear 161 |
. 2
(a ∩ b) ≤ b |
25 | 23, 24 | letr 137 |
1
(a ∩ (c ∪ (a ∩
b))) ≤ b |