Proof of Theorem oaliv
Step | Hyp | Ref
| Expression |
1 | | lea 160 |
. . . 4
(b⊥ ∩
((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))))) ≤ b⊥ |
2 | | oalii 1002 |
. . . 4
(b⊥ ∩
((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))))) ≤ a⊥ |
3 | 1, 2 | ler2an 173 |
. . 3
(b⊥ ∩
((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))))) ≤ (b⊥ ∩ a⊥ ) |
4 | | df-i2 45 |
. . . . . . 7
(a →2 b) = (b ∪
(a⊥ ∩ b⊥ )) |
5 | | ancom 74 |
. . . . . . . 8
(a⊥ ∩ b⊥ ) = (b⊥ ∩ a⊥ ) |
6 | 5 | lor 70 |
. . . . . . 7
(b ∪ (a⊥ ∩ b⊥ )) = (b ∪ (b⊥ ∩ a⊥ )) |
7 | 4, 6 | ax-r2 36 |
. . . . . 6
(a →2 b) = (b ∪
(b⊥ ∩ a⊥ )) |
8 | 7 | lan 77 |
. . . . 5
(b⊥ ∩ (a →2 b)) = (b⊥ ∩ (b ∪ (b⊥ ∩ a⊥ ))) |
9 | | omlan 448 |
. . . . 5
(b⊥ ∩ (b ∪ (b⊥ ∩ a⊥ ))) = (b⊥ ∩ a⊥ ) |
10 | 8, 9 | ax-r2 36 |
. . . 4
(b⊥ ∩ (a →2 b)) = (b⊥ ∩ a⊥ ) |
11 | 10 | ax-r1 35 |
. . 3
(b⊥ ∩ a⊥ ) = (b⊥ ∩ (a →2 b)) |
12 | 3, 11 | lbtr 139 |
. 2
(b⊥ ∩
((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))))) ≤ (b⊥ ∩ (a →2 b)) |
13 | | leo 158 |
. 2
(b⊥ ∩ (a →2 b)) ≤ ((b⊥ ∩ (a →2 b)) ∪ (c⊥ ∩ (a →2 c))) |
14 | 12, 13 | letr 137 |
1
(b⊥ ∩
((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))))) ≤ ((b⊥ ∩ (a →2 b)) ∪ (c⊥ ∩ (a →2 c))) |