Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > omlan | GIF version |
Description: Orthomodular law. (Contributed by NM, 7-Nov-1997.) |
Ref | Expression |
---|---|
omlan | (a⊥ ∩ (a ∪ (a⊥ ∩ b))) = (a⊥ ∩ b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-a1 30 | . . . 4 a = a⊥ ⊥ | |
2 | 1 | ax-r5 38 | . . 3 (a ∪ (a⊥ ∩ b)) = (a⊥ ⊥ ∪ (a⊥ ∩ b)) |
3 | 2 | lan 77 | . 2 (a⊥ ∩ (a ∪ (a⊥ ∩ b))) = (a⊥ ∩ (a⊥ ⊥ ∪ (a⊥ ∩ b))) |
4 | omla 447 | . 2 (a⊥ ∩ (a⊥ ⊥ ∪ (a⊥ ∩ b))) = (a⊥ ∩ b) | |
5 | 3, 4 | ax-r2 36 | 1 (a⊥ ∩ (a ∪ (a⊥ ∩ b))) = (a⊥ ∩ b) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 |
This theorem is referenced by: i3lem1 504 i3lem3 506 u1lem8 776 u3lem10 785 3vth1 804 1oaii 824 mlaconjolem 885 oatr 928 oalii 1002 oaliv 1003 |
Copyright terms: Public domain | W3C validator |