QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  omlan GIF version

Theorem omlan 448
Description: Orthomodular law. (Contributed by NM, 7-Nov-1997.)
Assertion
Ref Expression
omlan (a ∩ (a ∪ (ab))) = (ab)

Proof of Theorem omlan
StepHypRef Expression
1 ax-a1 30 . . . 4 a = a
21ax-r5 38 . . 3 (a ∪ (ab)) = (a ∪ (ab))
32lan 77 . 2 (a ∩ (a ∪ (ab))) = (a ∩ (a ∪ (ab)))
4 omla 447 . 2 (a ∩ (a ∪ (ab))) = (ab)
53, 4ax-r2 36 1 (a ∩ (a ∪ (ab))) = (ab)
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42
This theorem is referenced by:  i3lem1  504  i3lem3  506  u1lem8  776  u3lem10  785  3vth1  804  1oaii  824  mlaconjolem  885  oatr  928  oalii  1002  oaliv  1003
  Copyright terms: Public domain W3C validator