| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > oatr | GIF version | ||
| Description: Reverse transformation lemma for studying the orthoarguesian law. (Contributed by NM, 26-Dec-1998.) |
| Ref | Expression |
|---|---|
| oatr.1 | b ≤ (a⊥ →1 c) |
| Ref | Expression |
|---|---|
| oatr | (a⊥ ∩ (a ∪ b)) ≤ c |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leo 158 | . . . . 5 a ≤ (a ∪ (a⊥ ∩ c)) | |
| 2 | oatr.1 | . . . . . 6 b ≤ (a⊥ →1 c) | |
| 3 | df-i1 44 | . . . . . . 7 (a⊥ →1 c) = (a⊥ ⊥ ∪ (a⊥ ∩ c)) | |
| 4 | ax-a1 30 | . . . . . . . . 9 a = a⊥ ⊥ | |
| 5 | 4 | ax-r5 38 | . . . . . . . 8 (a ∪ (a⊥ ∩ c)) = (a⊥ ⊥ ∪ (a⊥ ∩ c)) |
| 6 | 5 | ax-r1 35 | . . . . . . 7 (a⊥ ⊥ ∪ (a⊥ ∩ c)) = (a ∪ (a⊥ ∩ c)) |
| 7 | 3, 6 | ax-r2 36 | . . . . . 6 (a⊥ →1 c) = (a ∪ (a⊥ ∩ c)) |
| 8 | 2, 7 | lbtr 139 | . . . . 5 b ≤ (a ∪ (a⊥ ∩ c)) |
| 9 | 1, 8 | lel2or 170 | . . . 4 (a ∪ b) ≤ (a ∪ (a⊥ ∩ c)) |
| 10 | 9 | lelan 167 | . . 3 (a⊥ ∩ (a ∪ b)) ≤ (a⊥ ∩ (a ∪ (a⊥ ∩ c))) |
| 11 | omlan 448 | . . 3 (a⊥ ∩ (a ∪ (a⊥ ∩ c))) = (a⊥ ∩ c) | |
| 12 | 10, 11 | lbtr 139 | . 2 (a⊥ ∩ (a ∪ b)) ≤ (a⊥ ∩ c) |
| 13 | lear 161 | . 2 (a⊥ ∩ c) ≤ c | |
| 14 | 12, 13 | letr 137 | 1 (a⊥ ∩ (a ∪ b)) ≤ c |
| Colors of variables: term |
| Syntax hints: ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 |
| This theorem is referenced by: oa4dtoc 969 |
| Copyright terms: Public domain | W3C validator |