Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > ska13 | GIF version |
Description: Soundness theorem for Kalmbach's quantum propositional logic axiom KA13. (Contributed by NM, 30-Aug-1997.) |
Ref | Expression |
---|---|
ska13 | ((a ≡ b)⊥ ∪ (a⊥ ∪ b)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ledio 176 | . . . . 5 ((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ≤ (((a ∩ b) ∪ a⊥ ) ∩ ((a ∩ b) ∪ b⊥ )) | |
2 | lea 160 | . . . . 5 (((a ∩ b) ∪ a⊥ ) ∩ ((a ∩ b) ∪ b⊥ )) ≤ ((a ∩ b) ∪ a⊥ ) | |
3 | 1, 2 | letr 137 | . . . 4 ((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ≤ ((a ∩ b) ∪ a⊥ ) |
4 | ancom 74 | . . . . . 6 (a ∩ b) = (b ∩ a) | |
5 | lea 160 | . . . . . 6 (b ∩ a) ≤ b | |
6 | 4, 5 | bltr 138 | . . . . 5 (a ∩ b) ≤ b |
7 | 6 | leror 152 | . . . 4 ((a ∩ b) ∪ a⊥ ) ≤ (b ∪ a⊥ ) |
8 | 3, 7 | letr 137 | . . 3 ((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ≤ (b ∪ a⊥ ) |
9 | dfb 94 | . . 3 (a ≡ b) = ((a ∩ b) ∪ (a⊥ ∩ b⊥ )) | |
10 | ax-a2 31 | . . 3 (a⊥ ∪ b) = (b ∪ a⊥ ) | |
11 | 8, 9, 10 | le3tr1 140 | . 2 (a ≡ b) ≤ (a⊥ ∪ b) |
12 | 11 | sklem 230 | 1 ((a ≡ b)⊥ ∪ (a⊥ ∪ b)) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ≡ tb 5 ∪ wo 6 ∩ wa 7 1wt 8 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |