Proof of Theorem wlem1
Step | Hyp | Ref
| Expression |
1 | | le1 146 |
. 2
((a ≡ b)⊥ ∪ ((a →1 b) ∩ (b
→1 a))) ≤
1 |
2 | | df-t 41 |
. . . 4
1 = ((a ≡ b) ∪ (a
≡ b)⊥
) |
3 | | ax-a2 31 |
. . . 4
((a ≡ b) ∪ (a
≡ b)⊥ ) = ((a ≡ b)⊥ ∪ (a ≡ b)) |
4 | 2, 3 | ax-r2 36 |
. . 3
1 = ((a ≡ b)⊥ ∪ (a ≡ b)) |
5 | | dfb 94 |
. . . . 5
(a ≡ b) = ((a ∩
b) ∪ (a⊥ ∩ b⊥ )) |
6 | | ledio 176 |
. . . . . 6
((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ≤ (((a ∩ b) ∪
a⊥ ) ∩ ((a ∩ b) ∪
b⊥ )) |
7 | | df-i1 44 |
. . . . . . . . 9
(a →1 b) = (a⊥ ∪ (a ∩ b)) |
8 | | ax-a2 31 |
. . . . . . . . 9
(a⊥ ∪ (a ∩ b)) =
((a ∩ b) ∪ a⊥ ) |
9 | 7, 8 | ax-r2 36 |
. . . . . . . 8
(a →1 b) = ((a ∩
b) ∪ a⊥ ) |
10 | | df-i1 44 |
. . . . . . . . 9
(b →1 a) = (b⊥ ∪ (b ∩ a)) |
11 | | ax-a2 31 |
. . . . . . . . . 10
(b⊥ ∪ (b ∩ a)) =
((b ∩ a) ∪ b⊥ ) |
12 | | ancom 74 |
. . . . . . . . . . 11
(b ∩ a) = (a ∩
b) |
13 | 12 | ax-r5 38 |
. . . . . . . . . 10
((b ∩ a) ∪ b⊥ ) = ((a ∩ b) ∪
b⊥ ) |
14 | 11, 13 | ax-r2 36 |
. . . . . . . . 9
(b⊥ ∪ (b ∩ a)) =
((a ∩ b) ∪ b⊥ ) |
15 | 10, 14 | ax-r2 36 |
. . . . . . . 8
(b →1 a) = ((a ∩
b) ∪ b⊥ ) |
16 | 9, 15 | 2an 79 |
. . . . . . 7
((a →1 b) ∩ (b
→1 a)) = (((a ∩ b) ∪
a⊥ ) ∩ ((a ∩ b) ∪
b⊥ )) |
17 | 16 | ax-r1 35 |
. . . . . 6
(((a ∩ b) ∪ a⊥ ) ∩ ((a ∩ b) ∪
b⊥ )) = ((a →1 b) ∩ (b
→1 a)) |
18 | 6, 17 | lbtr 139 |
. . . . 5
((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ≤ ((a →1 b) ∩ (b
→1 a)) |
19 | 5, 18 | bltr 138 |
. . . 4
(a ≡ b) ≤ ((a
→1 b) ∩ (b →1 a)) |
20 | 19 | lelor 166 |
. . 3
((a ≡ b)⊥ ∪ (a ≡ b))
≤ ((a ≡ b)⊥ ∪ ((a →1 b) ∩ (b
→1 a))) |
21 | 4, 20 | bltr 138 |
. 2
1 ≤ ((a ≡ b)⊥ ∪ ((a →1 b) ∩ (b
→1 a))) |
22 | 1, 21 | lebi 145 |
1
((a ≡ b)⊥ ∪ ((a →1 b) ∩ (b
→1 a))) =
1 |