| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > u1lem2 | GIF version | ||
| Description: Lemma for unified implication study. (Contributed by NM, 16-Dec-1997.) |
| Ref | Expression |
|---|---|
| u1lem2 | (((a →1 b) →1 a) →1 a) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i1 44 | . 2 (((a →1 b) →1 a) →1 a) = (((a →1 b) →1 a)⊥ ∪ (((a →1 b) →1 a) ∩ a)) | |
| 2 | u1lem1n 739 | . . . 4 ((a →1 b) →1 a)⊥ = a⊥ | |
| 3 | u1lem1 734 | . . . . . 6 ((a →1 b) →1 a) = a | |
| 4 | 3 | ran 78 | . . . . 5 (((a →1 b) →1 a) ∩ a) = (a ∩ a) |
| 5 | anidm 111 | . . . . 5 (a ∩ a) = a | |
| 6 | 4, 5 | ax-r2 36 | . . . 4 (((a →1 b) →1 a) ∩ a) = a |
| 7 | 2, 6 | 2or 72 | . . 3 (((a →1 b) →1 a)⊥ ∪ (((a →1 b) →1 a) ∩ a)) = (a⊥ ∪ a) |
| 8 | ax-a2 31 | . . . 4 (a⊥ ∪ a) = (a ∪ a⊥ ) | |
| 9 | df-t 41 | . . . . 5 1 = (a ∪ a⊥ ) | |
| 10 | 9 | ax-r1 35 | . . . 4 (a ∪ a⊥ ) = 1 |
| 11 | 8, 10 | ax-r2 36 | . . 3 (a⊥ ∪ a) = 1 |
| 12 | 7, 11 | ax-r2 36 | . 2 (((a →1 b) →1 a)⊥ ∪ (((a →1 b) →1 a) ∩ a)) = 1 |
| 13 | 1, 12 | ax-r2 36 | 1 (((a →1 b) →1 a) →1 a) = 1 |
| Colors of variables: term |
| Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 →1 wi1 12 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |