QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  u5lem1n GIF version

Theorem u5lem1n 743
Description: Lemma for unified implication study. (Contributed by NM, 16-Dec-1997.)
Assertion
Ref Expression
u5lem1n ((a5 b) →5 a) = ((ab) ∪ (ab ))

Proof of Theorem u5lem1n
StepHypRef Expression
1 u5lem1 738 . . 3 ((a5 b) →5 a) = ((ab) ∩ (ab ))
2 ancom 74 . . . 4 ((ab) ∩ (ab )) = ((ab ) ∩ (ab))
3 df-a 40 . . . . 5 ((ab ) ∩ (ab)) = ((ab ) ∪ (ab) )
4 anor2 89 . . . . . . . 8 (ab) = (ab )
5 anor3 90 . . . . . . . 8 (ab ) = (ab)
64, 52or 72 . . . . . . 7 ((ab) ∪ (ab )) = ((ab ) ∪ (ab) )
76ax-r4 37 . . . . . 6 ((ab) ∪ (ab )) = ((ab ) ∪ (ab) )
87ax-r1 35 . . . . 5 ((ab ) ∪ (ab) ) = ((ab) ∪ (ab ))
93, 8ax-r2 36 . . . 4 ((ab ) ∩ (ab)) = ((ab) ∪ (ab ))
102, 9ax-r2 36 . . 3 ((ab) ∩ (ab )) = ((ab) ∪ (ab ))
111, 10ax-r2 36 . 2 ((a5 b) →5 a) = ((ab) ∪ (ab ))
1211con2 67 1 ((a5 b) →5 a) = ((ab) ∪ (ab ))
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  5 wi5 16
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i5 48  df-le1 130  df-le2 131  df-c1 132  df-c2 133
This theorem is referenced by:  u5lem2  748
  Copyright terms: Public domain W3C validator