Proof of Theorem u1lem3
Step | Hyp | Ref
| Expression |
1 | | df-i1 44 |
. 2
(a →1 (b →1 a)) = (a⊥ ∪ (a ∩ (b
→1 a))) |
2 | | ancom 74 |
. . . . . . . 8
(a ∩ b) = (b ∩
a) |
3 | | ancom 74 |
. . . . . . . 8
(a ∩ b⊥ ) = (b⊥ ∩ a) |
4 | 2, 3 | 2or 72 |
. . . . . . 7
((a ∩ b) ∪ (a
∩ b⊥ )) = ((b ∩ a) ∪
(b⊥ ∩ a)) |
5 | | u1lemab 610 |
. . . . . . . 8
((b →1 a) ∩ a) =
((b ∩ a) ∪ (b⊥ ∩ a)) |
6 | 5 | ax-r1 35 |
. . . . . . 7
((b ∩ a) ∪ (b⊥ ∩ a)) = ((b
→1 a) ∩ a) |
7 | 4, 6 | ax-r2 36 |
. . . . . 6
((a ∩ b) ∪ (a
∩ b⊥ )) = ((b →1 a) ∩ a) |
8 | | ancom 74 |
. . . . . 6
((b →1 a) ∩ a) =
(a ∩ (b →1 a)) |
9 | 7, 8 | ax-r2 36 |
. . . . 5
((a ∩ b) ∪ (a
∩ b⊥ )) = (a ∩ (b
→1 a)) |
10 | 9 | ax-r1 35 |
. . . 4
(a ∩ (b →1 a)) = ((a ∩
b) ∪ (a ∩ b⊥ )) |
11 | 10 | lor 70 |
. . 3
(a⊥ ∪ (a ∩ (b
→1 a))) = (a⊥ ∪ ((a ∩ b) ∪
(a ∩ b⊥ ))) |
12 | | id 59 |
. . 3
(a⊥ ∪
((a ∩ b) ∪ (a
∩ b⊥ ))) = (a⊥ ∪ ((a ∩ b) ∪
(a ∩ b⊥ ))) |
13 | 11, 12 | ax-r2 36 |
. 2
(a⊥ ∪ (a ∩ (b
→1 a))) = (a⊥ ∪ ((a ∩ b) ∪
(a ∩ b⊥ ))) |
14 | 1, 13 | ax-r2 36 |
1
(a →1 (b →1 a)) = (a⊥ ∪ ((a ∩ b) ∪
(a ∩ b⊥ ))) |