| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > u5lem2 | GIF version | ||
| Description: Lemma for unified implication study. (Contributed by NM, 24-Dec-1997.) |
| Ref | Expression |
|---|---|
| u5lem2 | (((a →5 b) →5 a) →5 a) = (a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | u5lemc1b 685 | . . . 4 a C ((a →5 b) →5 a) | |
| 2 | 1 | comcom 453 | . . 3 ((a →5 b) →5 a) C a |
| 3 | 2 | u5lemc4 705 | . 2 (((a →5 b) →5 a) →5 a) = (((a →5 b) →5 a)⊥ ∪ a) |
| 4 | u5lem1n 743 | . . . 4 ((a →5 b) →5 a)⊥ = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) | |
| 5 | 4 | ax-r5 38 | . . 3 (((a →5 b) →5 a)⊥ ∪ a) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ a) |
| 6 | ax-a2 31 | . . 3 (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ a) = (a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) | |
| 7 | 5, 6 | ax-r2 36 | . 2 (((a →5 b) →5 a)⊥ ∪ a) = (a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
| 8 | 3, 7 | ax-r2 36 | 1 (((a →5 b) →5 a) →5 a) = (a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
| Colors of variables: term |
| Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →5 wi5 16 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i5 48 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |