Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u1lemc2 | GIF version |
Description: Commutation theorem for Sasaki implication. (Contributed by NM, 14-Dec-1997.) |
Ref | Expression |
---|---|
ulemc2.1 | a C b |
ulemc2.2 | a C c |
Ref | Expression |
---|---|
u1lemc2 | a C (b →1 c) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ulemc2.1 | . . . 4 a C b | |
2 | 1 | comcom2 183 | . . 3 a C b⊥ |
3 | ulemc2.2 | . . . 4 a C c | |
4 | 1, 3 | com2an 484 | . . 3 a C (b ∩ c) |
5 | 2, 4 | com2or 483 | . 2 a C (b⊥ ∪ (b ∩ c)) |
6 | df-i1 44 | . . 3 (b →1 c) = (b⊥ ∪ (b ∩ c)) | |
7 | 6 | ax-r1 35 | . 2 (b⊥ ∪ (b ∩ c)) = (b →1 c) |
8 | 5, 7 | cbtr 182 | 1 a C (b →1 c) |
Colors of variables: term |
Syntax hints: C wc 3 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: u1lemc3 691 |
Copyright terms: Public domain | W3C validator |