QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  u1lemc2 GIF version

Theorem u1lemc2 686
Description: Commutation theorem for Sasaki implication. (Contributed by NM, 14-Dec-1997.)
Hypotheses
Ref Expression
ulemc2.1 a C b
ulemc2.2 a C c
Assertion
Ref Expression
u1lemc2 a C (b1 c)

Proof of Theorem u1lemc2
StepHypRef Expression
1 ulemc2.1 . . . 4 a C b
21comcom2 183 . . 3 a C b
3 ulemc2.2 . . . 4 a C c
41, 3com2an 484 . . 3 a C (bc)
52, 4com2or 483 . 2 a C (b ∪ (bc))
6 df-i1 44 . . 3 (b1 c) = (b ∪ (bc))
76ax-r1 35 . 2 (b ∪ (bc)) = (b1 c)
85, 7cbtr 182 1 a C (b1 c)
Colors of variables: term
Syntax hints:   C wc 3   wn 4  wo 6  wa 7  1 wi1 12
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-le1 130  df-le2 131  df-c1 132  df-c2 133
This theorem is referenced by:  u1lemc3  691
  Copyright terms: Public domain W3C validator