Proof of Theorem com2or
Step | Hyp | Ref
| Expression |
1 | | fh.1 |
. . . . . . . . 9
a C b |
2 | 1 | comcom 453 |
. . . . . . . 8
b C a |
3 | 2 | df-c2 133 |
. . . . . . 7
b = ((b ∩ a) ∪
(b ∩ a⊥ )) |
4 | | ancom 74 |
. . . . . . . 8
(b ∩ a) = (a ∩
b) |
5 | | ancom 74 |
. . . . . . . 8
(b ∩ a⊥ ) = (a⊥ ∩ b) |
6 | 4, 5 | 2or 72 |
. . . . . . 7
((b ∩ a) ∪ (b
∩ a⊥ )) = ((a ∩ b) ∪
(a⊥ ∩ b)) |
7 | 3, 6 | ax-r2 36 |
. . . . . 6
b = ((a ∩ b) ∪
(a⊥ ∩ b)) |
8 | | fh.2 |
. . . . . . . . 9
a C c |
9 | 8 | comcom 453 |
. . . . . . . 8
c C a |
10 | 9 | df-c2 133 |
. . . . . . 7
c = ((c ∩ a) ∪
(c ∩ a⊥ )) |
11 | | ancom 74 |
. . . . . . . 8
(c ∩ a) = (a ∩
c) |
12 | | ancom 74 |
. . . . . . . 8
(c ∩ a⊥ ) = (a⊥ ∩ c) |
13 | 11, 12 | 2or 72 |
. . . . . . 7
((c ∩ a) ∪ (c
∩ a⊥ )) = ((a ∩ c) ∪
(a⊥ ∩ c)) |
14 | 10, 13 | ax-r2 36 |
. . . . . 6
c = ((a ∩ c) ∪
(a⊥ ∩ c)) |
15 | 7, 14 | 2or 72 |
. . . . 5
(b ∪ c) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ ((a
∩ c) ∪ (a⊥ ∩ c))) |
16 | | or4 84 |
. . . . 5
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a
∩ c) ∪ (a⊥ ∩ c))) = (((a
∩ b) ∪ (a ∩ c))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ c))) |
17 | 15, 16 | ax-r2 36 |
. . . 4
(b ∪ c) = (((a ∩
b) ∪ (a ∩ c))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ c))) |
18 | | ancom 74 |
. . . . . . 7
((b ∪ c) ∩ a) =
(a ∩ (b ∪ c)) |
19 | 1, 8 | fh1 469 |
. . . . . . 7
(a ∩ (b ∪ c)) =
((a ∩ b) ∪ (a
∩ c)) |
20 | 18, 19 | ax-r2 36 |
. . . . . 6
((b ∪ c) ∩ a) =
((a ∩ b) ∪ (a
∩ c)) |
21 | | ancom 74 |
. . . . . . 7
((b ∪ c) ∩ a⊥ ) = (a⊥ ∩ (b ∪ c)) |
22 | 1 | comcom3 454 |
. . . . . . . 8
a⊥ C
b |
23 | 8 | comcom3 454 |
. . . . . . . 8
a⊥ C
c |
24 | 22, 23 | fh1 469 |
. . . . . . 7
(a⊥ ∩ (b ∪ c)) =
((a⊥ ∩ b) ∪ (a⊥ ∩ c)) |
25 | 21, 24 | ax-r2 36 |
. . . . . 6
((b ∪ c) ∩ a⊥ ) = ((a⊥ ∩ b) ∪ (a⊥ ∩ c)) |
26 | 20, 25 | 2or 72 |
. . . . 5
(((b ∪ c) ∩ a)
∪ ((b ∪ c) ∩ a⊥ )) = (((a ∩ b) ∪
(a ∩ c)) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ c))) |
27 | 26 | ax-r1 35 |
. . . 4
(((a ∩ b) ∪ (a
∩ c)) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ c))) = (((b
∪ c) ∩ a) ∪ ((b
∪ c) ∩ a⊥ )) |
28 | 17, 27 | ax-r2 36 |
. . 3
(b ∪ c) = (((b ∪
c) ∩ a) ∪ ((b
∪ c) ∩ a⊥ )) |
29 | 28 | df-c1 132 |
. 2
(b ∪ c) C a |
30 | 29 | comcom 453 |
1
a C (b ∪ c) |